

UI++
Version 2.11.1.2

April 21, 2019

Jason Sandys

https://home.configmgrftw.com

1 CONTENTS
2 What is it .. 4

3 Where Can I Get It ... 4

4 Current Change Log ... 4

5 What UI++ Does ... 8

5.1 Dialogs ... 8

5.1.1 Info .. 9

5.1.2 Error Info ... 9

5.1.3 Input .. 10

5.1.4 AppTree ... 11

5.1.5 Preflight ... 13

5.1.6 AD Authentication ... 13

5.2 Registry ... 14

5.3 WMI... 14

5.4 Files ... 14

5.5 External Command .. 15

6 Running UI++ ... 15

6.1 Common Usage Scenarios... 15

6.1.1 Use outside of a task sequence (including testing). ... 15

6.1.2 Use within a task sequence ... 15

6.1.3 Use as a prestart command .. 16

6.2 Optional command-line parameters ... 18

6.3 Variable Editor .. 19

6.4 Log File .. 20

7 Common Snippets .. 20

7.1 Preflight Checks... 21

7.2 Required Applications Based on Group Membership ... 21

8 Complete Examples ... 21

8.1 Example 1: Within OSD ... 21

8.1.1 XML Listing .. 23

8.1.2 XML Breakdown .. 24

8.2 Example 2: A Complex Real-world Example Within OSD .. 27

8.2.1 XML Listing .. 33

8.2.2 XML Breakdown .. 36

9 Configuration File .. 41

9.1 Feature Configuration & Example Snippets .. 41

9.1.1 Action Groups ... 41

9.1.2 AD Authentication ... 41

9.1.3 AppTree ... 43

9.1.4 Default Values ... 49

9.1.5 External Call .. 55

9.1.6 Error Info ... 55

9.1.7 Info .. 55

9.1.8 Input .. 56

9.1.9 Files ... 60

9.1.10 Preflight ... 60

9.1.11 SaveItems .. 64

9.1.12 Switch .. 65

9.1.13 Registry ... 66

9.1.14 Task Sequence Variable .. 66

9.1.15 Software Discovery ... 66

9.1.16 Task Sequence Variable List .. 67

9.1.17 Variable Saving and Loading ... 68

9.1.18 WMI ... 71

9.2 The Back Button .. 71

9.3 Values and Variables ... 72

9.3.1 Variable Replacement ... 73

9.3.2 Boolean Variable Negation ... 73

9.4 Conditions ... 73

10 Configuration File Reference .. 75

11 Change Log History ... 91

12 Known Issues ... 97

13 License ... 97

4

2 WHAT IS IT
UI++ is a better way to display information to the interactive user, solicit input from that same interactive
user, and populate task sequences variables during (surprise) System Center Configuration Manager
(ConfigMgr) Operating System Deployment (OSD). UI++ is completely redesigned from OSD++ version 1
and also rolls in the features of OSD AppTree.

UI++ is completely customizable: each and every message, prompt, hint, value, etc. is controllable using
an easy to create XML based configuration file.

In addition to simply displaying information to the user and prompting them for input, UI++ can also read
from and write to the registry, query and write to WMI, and display a tree of packages and applications
to choose for installation in the task sequence.

Although designed with ConfigMgr OSD in mind, there are potentially many other uses for UI++.

3 WHERE CAN I GET IT
UI++ is available at https://home.configmgrftw.com/uiplusplus/.

Please send all bugs, features requests, comments, etc. to me using the contact form there.

4 CURRENT CHANGE LOG
The following is the current change log for changes since version 2.10.0.0. For changes prior to that, see
section 11 (“Change Log History”).

All items listed below are hyperlinked to their corresponding sections in the documentation for quick
access where applicable.

2.11.1.2

• Fixed
o Fixed additional bugs that resulted in a crash when including User values in a

DefaultValues action.
o WMIRead action not working at all.
o DefaultValues action now always hides the task sequence progress bar if the

DefaultValues action shows its own progress bar.

2.11.1.1

• Fixed
o Fixed bug that resulted in a crash when including User values in a DefaultValues action.
o Domain name field in UserAuth action set to read-only is now actually read-only.

2.11.1.0

https://home.configmgrftw.com/uiplusplus/

5

• Updated
o Separated logging functionality to its own DLL. Ensure that you now also include the

FTWCMLog.dll file in any boot media, packages, or locations that you run UI++ from.
o UserAuth actions now look for the closest domain controller to connect to.

• Fixed
o Fixed bug that resulted in a crash when specifying the Tall Size for a Preflight action.
o Fixed bug that resulted in a crash when clicking in open space on an AppTree action.
o Fixed bug that resulted in a crash when including User values in a DefaultValues action.

2.11.0.3

• Fixed
o Overlapping time countdown and next/OK button on a Preflight action dialog when all

four buttons are shown.
o Scaling of text on an InputInfo item properly accounts for two-line InputInfo items.
o Visual C++ Runtime library .dll dependency.

2.11.0.1

• Added
o Lenovo model detection during a DefaultValues action.
o Optional removal of the sidebar from dialogs.
o Active Directory computer name check.
o The Preflight action can now display warnings in addition to failures.
o The Preflight action can now have a countdown exactly like the Info action.
o A refresh button to the Preflight action.
o Horizontal scroll option to TextInput types.

• Fixed
o Issue where XHWChassisType was not set properly for virtual machines.
o Random text color for InputText items.

• Updated
o Separated LDAP functionality into its own DLL. Ensure that you now also include the

FTWldap.dll file in any boot media, packages, or locations that you run UI++ from.
o The dialog border color now matches the Color value set on the UIpp root element.
o Flat dialogs now have a border.
o The countdown timer for Info actions now appears to the right of the dialog buttons and

includes only the time remaining.
o The countdown timer changes color to orange when 25% of the time remains and red

when 10% remains.
o The DefaultValues action now recognizes ChassisTypes with code 35 and 36 as desktops.
o Tooltips for Preflight check descriptions are now displayed using an info icon displayed

before the item instead of on the text itself.
• Removed

o Customization or inclusion of a timer countdown message on the Info action.
o Dialog Icons.

6

2.10.4.0

• Fixed
o UserAuth action with the GetGroups attribute set to True successfully checked

authentication but did not allow progress to the next action.
o Condition evaluation bug where in some cases conditions based on single variable values

did not correctly return True.
• Updated

o Regular Expression matches on Case elements within a Switch action now match on
substrings instead of just the complete string specified in the OnValue attribute.

o Reverted variable substitution behavior so that if a variable is not found, it is replaced by
a blank value.

o Variable substitution now replaces variables with environment variable values as well as
task sequence variable values. Environment variable values take precedence in cases of
name collisions.

o DefaultValues action determination of the XSystemUEFI variable’s value now matches
what ConfigMgr does for _SMSTSBootUEFI.

o InputInfo elements within a UserInput action now scale their font size based on the line
length to accommodate longer strings.

o The list box portion of a ChoiceInput now dynamically increases its width to show longer
choices.

o The edit box portion of a ChoiceInput now displays a tool tip if the user hovers over it and
the choice selected is too long.

2.10.3.0

• Added
o Ability to set UI++ windows to not always on top.
o Ability to specify additional user attributes to collect during UserAuth and populate into

variables.
o New SaveItems action type to copy or save files and debug information to a specific

location.
• Updated

o UserAuth behavior when user is not a member of the groups specified. Instead of failing
completely, this now simply counts as a single failure allowing the interactive user to try
again up to the defined MaxRetryCount.

o UserAuth optimization.
o Variable substitution behavior when a specified variable does not exist. Previously, this

replaced the variable with an empty string; now, the variable is left intact including the
surrounding percent symbols.

• Fixed
o Multiple bugs when hiding the DefaultValues progress bar including it not collecting any

values at all and a memory leak.

2.10.2.0

7

• Added
o Conditions now work on Case and Variable elements within a Switch action.
o Ability to force text in a TextInput item to either upper of lower case at input time.
o Ability to set default values of ChoiceInput items based on alternate values.
o Ability to perform case insensitive regular expression matches in Switch actions.

• Updated
o Performance improvement during DefaultValues action.
o Executables are now signed.

2.10.1.0

• Added
o Ability to load extension DLLs that contain additional actions.
o Ability to specify the size of the drop list for a ChoiceInput.

• Fixed
o Initial field focus bug in the UserAuth action.
o Keyboard usability bug in the UserAuth action when using a drop-down for domains.

2.10.0.0

• Added
o ActionGroup element to group Action elements in the configuration XML.
o Additional detections to the DefaultValues action:

 Is TPM enabled.
 Is system joined to domain.
 User principal name.
 BitLocker protection status of the system drive.
 OS System Drive.
 Firewall Information.
 Management Information.
 Windows Update Information.
 Windows Defender Information.
 Azure AD Information.

o Added VM and Security value type groups to the DefaultValues action.
• Fixed

o Bug in unsorted ChoiceInput fields where the default value was not properly selected at
initiation time if the option didn’t match the value and the value was specified as the
default. This also affected going back to a dialog where a choice was selected on an
unsorted ChoiceInput where the option didn’t match the value.

o Memory leak when a parsing error was encountered during VBScript expression
evaluation.

o TPM detection.
o Handling of boolean properties in WMI; instead of returning -1 and 0, True and False are

now properly returned.

8

5 WHAT UI++ DOES
UI++ does whatever you want it to do. Ultimately, its main purpose in life is to gather info from a system
or from an interactive user and based upon this info, write values to task sequence variables, the registry,
or WMI. Writing the values to task sequence variables allows those values to be consumed later in the
task sequence for things like naming the system being deployed, setting the time zone, or installing
software. Writing the values to the registry or WMI allows those values to be consumed outside of a task
sequence including by hardware inventory.

UI++ can be called like any other executable inside of a task sequence or within Windows. In addition to
simply calling the executable, you must supply a configuration file. This file is an XML file that defines all
behavior of UI++. This behavior is defined as a series of Actions that include any of the following in any
order including multiple occurrences as necessary:

• Showing a Dialog
o Error Info
o User Info
o User Input
o Application Select Tree
o Active Directory Authentication

• Creating default task sequence variables based on the current system state
• Reading from the registry
• Writing to the registry
• Querying WMI
• Creating a WMI namespace, class, and/or object
• Setting a task sequence variable

UI++ was mainly designed to be used with ConfigMgr 2012 SP1/R2 and all testing has been done with
2012 R2. It should work fine with ConfigMgr 2007, but I won’t guarantee anything there. Additionally,
UI++ should work on any supported version and edition of Windows for use outside of a task sequence.

5.1 DIALOGS
All user interface dialogs have the same look and feel including the following:

1. Rounded corners
2. Flat look and feel
3. Major title
4. Dialog title

9

Figure 1: A Base Dialog

5.1.1 Info
The first type of dialog is the simple Info Dialog. This dialog is meant to convey information to the user. It
includes an open text area which can be formatted using standard HTML.

Figure 2: An Info Dialog

5.1.2 Error Info
The ErrorInfo dialog is nearly identical to an Info dialog except that it is can only show a Cancel button.

10

5.1.3 Input
User input can take the form of one or more dialog boxes each containing multiple text input boxes, drop-
down list boxes, checkboxes, or simply information items.

Each text input box has the following characteristics:

1. A prompt/question
2. A tooltip with a message describing the correct format of the text
3. An exclamation icon indicating that the field is not in the correct format
4. Textboxes are also highlighted in red when they do not have focus and do not contain text

matching the correct format
5. A hint is displayed in fields with no text helping the user know what to enter
6. Text within a field that does not match the correct format is colored red.
7. (not shown) A regular expression defining the exact format of acceptable text

Each drop-down list box has the following characteristics:

1. A prompt/question
2. An exclamation icon indicating that a choice has been made or not
3. A drop-down list of customizable choices

Each checkbox item has the following characteristics:

1. A prompt/question

Figure 3: An Input Dialog

If you put in more than fields in an input dialog than will fit, only the first will be shown.

11

The OK button will remain disabled until all input boxes have matched their defined regular expressions
and all drop-down list boxes have a valid selection.

UI++ is not limited to a single dialog box. Multiple dialog boxes can be presented. This may be useful to
group specific types of requests together or to prompt for a piece of information, retrieve a value from
WMI or the registry using the user’s input, and then further prompt the user based on the information
from WMI or the registry.

5.1.4 AppTree
An AppTree dialog displays a dialog with a tree containing applications and packages for the interactive
user to choose from. These applications and packages can be arbitrarily grouped to make selection easier.
Applications, packages, and groups can all be set to either selected by default or required. Applications
and packages can also reference other applications and packages to automatically include and can also be
hidden from the AppTree. Hidden application and packages are not directly selectable in the tree (because
they’re hidden of course), but can be set to required or default or can be selected because they are
specified as included when an application or package that is selected by the user.

12

Figure 4: An AppTree Dialog

Applications and packages chosen in an AppTree dialog are added to two sets of task sequence variables:
one for applications and one for packages. Each set of task sequence variables has a base variable. This
base variable should be added to either an Install Application step or Install Software step within the task
sequence. These steps with then perform the magic of the installing the chosen applications and packages.

13

5.1.5 Preflight
This action performs a series of checks on the local system. If all of the checks pass, then the preflight
stage is successful and the dialog can be dismissed continuing with additional UI++ actions. If any of checks
do not pass however, the dismissing the dialog also stops UI++ and returns an error code to the calling
task sequence or process.

The dialog itself displays each check and the result of the check. Checks can be any valid condition as
described in section 9.4 (“Conditions”). Up to six checks can be performed and displayed in a normal
Preflight dialog and twelve for a tall Preflight dialog.

Figure 5: A Preflight Dialog

5.1.6 AD Authentication
This dialog type displays a fixed set of three fields to the interactive user where they must supply their
domain credentials in order to authenticate and proceed with the rest of the actions defined for UI++ and
the task sequence in general.

14

Figure 6: An AD Authentication Dialog

5.2 REGISTRY
Values can be retrieved and put back into the registry. There is no UI for this task and there is no limit to
the number of values that you can work with. Values retrieved are stored as strings.

Values written to the registry can be written as either string (REG_SZ) or number (REG_DWORD) values.
If a key does not exist, it can be automatically created.

5.3 WMI
Values can be retrieved from WMI or written to WMI.

Note: Most of the default Windows WMI classes have very few writable attributes so writing
information to WMI is of limited value except for custom data collection.

There is no UI for this task and there is no limit to the number of values that you can work with. Values
retrieved are stored as strings.

5.4 FILES
The first line of can be retrieved from a specified text file and optionally deleted. The value of this line is
placed into a task sequence variable for use elsewhere within UI++ or a calling task sequence if used during
OSD.

15

The scenario that this is designed for is providing a text file with a list of possible system names. This
enables UI++ to provide a unique name to each new system when populating the OSDComputerName
task sequence variable. There are other possible scenarios though.

To supply the text file to UI++ during OSD, first place the text file in a share accessible to systems that will
execute UI++. Then use a Map Network Drive task before executing UI++ to map to this share using
credentials that have read and write access to the text file. In the UI++ configuration file, specify the path
to the text file using the drive letter specified in the Map Network Drive task as well as the proper sub-
folders if necessary.

5.5 EXTERNAL COMMAND
As its name implies, this action enables you to run any command-line that you wish. Nothing is explicitly
returned to UI++ but running the command in the process of running UI++ enables UI++ to pass values to
the command-line and then also use any task sequence variables that the command executed sets.

6 RUNNING UI++
By default, UI++ loads its configuration from a file named UI++.xml using the normal file location rules. To
load an alternately named file (or a file in an alternate location), use the command-line parameter
discussed below. See section 9 (“Configuration File") for details.

6.1 COMMON USAGE SCENARIOS

6.1.1 Use outside of a task sequence (including testing).
Simply run UI++ by double-clicking on the icon or from the command-line. The command-line parameters
specified below are valid.

As mentioned above, task sequence variables are not used outside of a task sequence but there is no
actual UI++ functionality loss – the internal variable system is equivalent and provides the same
functionality in a transparent manner.

6.1.2 Use within a task sequence
Using UI++ within a task sequence is one of the main ways to add interactivity to a task sequence. The
main drawback with this approach is that it may not the first thing that the users see. Also keep in mind
that if you run a task sequence from within Windows, you need to inject processes that display UI, like
UI++, onto the interactive desktop using something like ServuceUI.exe from MDT/UDI.

Note: UI++ no longer requires oledlg.dll. This requirement was previously removed.

1. Make the UI++ files available to the task sequence. This includes UI++.exe, FTWldap.dll, and your
configuration file -- the default name for the configuration file is UI++.xml but this can be changed
using a command-line parameter (see Optional command-line parameters below).

There are multiple ways to do this but I prefer to put them into a software distribution package –
no program is necessary. This has the advantage in larger distributed environments of ensuring

16

that the client accesses the files from the closest DP. The disadvantage is that you have to
remember to update the DP anytime you update the configuration file. An alternative is to place
the files in a shared folder and use a map folder task to make them available. This has the
advantage of not having to update the DP every time you make a change. It also has an advantage
when your task sequence is set to download and execute because the command-line task to run
UI++ (see the next step) can be run before the partition and format task within WinPE. A hybrid
approach is also possible where you put UI++.exe and FTWldap.dll in a package and make the
configuration file available using a shared folder.

Figure 7: Using UI++ in a Task Sequence

2. Create a command-line task to run UI++.exe. If you used a package for step 1, reference the
package you placed the files in this task. If you used a shared folder, make sure you used a map
folder task before this one and prefix UI++.exe with the drive letter you mapped in that task.

6.1.3 Use as a prestart command
Instead of including UI++ in a task sequence explicitly, you can embed it in your boot image(s) and run it
as a pre-start command. This has the advantage of making UI++ the first thing the user sees and also gives
you the ability to set the SMSTSPreferredAdvertID task sequence variable using UI++ forcing a specific task
sequence to be run.

As of ConfigMgr Current Branch, configuring a prestart for a boot image command is easy and is done
completely in the console.

17

1. Create a UNC accessible folder with the necessary UI++ files in it.
2. Open the properties of the boot image that you wish to add a pre-start command to and go to

the Customization tab.
a. Check the Enable prestart command option.
b. Supply a command-line to run UI++.
c. Check the Include files for the prestart command option.
d. Specify the UNC path to the folder with the UI++ files in it.
e. Update the boot image.

Figure 8: Configuring a boot image prestart command

You can also configure a prestart command for boot media during the Create Task Sequence Media
Wizard. On the customization tab, simply do the following:

1. Check the Enable prestart command option.
2. Supply a command-line to run UI++.
3. Check the Include files for the prestart command option.
4. Choose a package containing the UI++ files. This package need not have a program, it is simply

used to the copy the files from it.
5. Choose a distribution point where the package has been successfully distributed.

18

Figure 9: Configuring a prestart command in boot media

6.2 OPTIONAL COMMAND-LINE PARAMETERS
• /config:<filename> The filename of the configuration file to use. This can include a path if

necessary. If not specified, UI++.xml will be used. In addition to loading a local configuration file,
one can also be loaded from an HTTP or HTTPS location. To do this, specify the entire correct URL
(including prefixing it with http:// or https://) where the xml file can be accessed from. UI++ will
download the specified file from the URL to the current user’s TEMP directory and then load the
file from there.

An advantage of using command-line arguments is that you can use other task sequence variables
to set their values. For example, if you have multiple configuration files, you can populate a task
sequence variable named MyConfig with the filename and then use the following command-line:
UI++.exe /config:%MyConfig%.

Another advantage to using this parameter is that you don’t have to embed your configuration
file in a package or boot media.

• /retry:<count> If you specify an http or https location for the configuration file using the /config
switch, then this switch specifies how many times UI++ retries downloading the configuration file
in the event of a file download failure. UI++ pauses for five seconds between each attempt.

• /fallback:<filename> If you specify an http or https location for the configuration file using the
/config switch and the download fails, UI++ loads the file specified by this switch.

19

6.3 VARIABLE EDITOR
The Variable Editor is all new for UI++ 2.0 and enables the interactive user to view all set variables and
modify them (except of course read-only variables which have been hardened from modification in
ConfigMgr 2012). To open the variable editor, push Ctrl+F2 on any dialog. There are two lists presented,
one for “Read-only” variables (shown in Figure 10) and one for “Editable” variables (shown in Figure 11).

Figure 10: Read-only Variables

To modify an editable variable, simply click in the appropriate text box and modify the value.

Note: Your mileage may vary in modifying most of the built-in variables. Each has a specific
purpose and changing its value may result in various behaviors – this is not UI++’s fault. Know
what the value is and does before changing it. In general, changing values during a task sequence
from the variable editor has limited (if any) production value but can be very useful for testing
purposes.

20

Figure 11: Editable Variables

To dump a complete list of variables and their values from with UI++, simply press Ctrl+F3 on any dialog.
This will create a text file named UI++ Variable Dump <Date> <Time>.txt in the same place that the UI++
log file is currently being written to.

To completely disable the use of the variable editor, start UI++ using the /disabletsvareditor switch on
the command-line. This will also disable dumping variables to a file.Log File

6.4 LOG FILE
UI++ will generate or append to a log file named UI++.log every time it runs. This log records major events
and all significant activity that UI++ performs. If you launch UI++ and nothing happens, check this log file
for details. To prevent any ugliness from being presented to an end user, everything is sent to this file
without notifying the interactive user.

The log file is a standard ConfigMgr log file and is best viewed using CMTrace. If UI++ is run inside a task
sequence, the log file is located with the standard task sequence log file SMSTS.log: if you place the task
at or near the beginning of the task sequence as described in the usage section, this will be
X:\Windows\Temp\SMSTS. If you run UI++ outside of a task sequence, the log file will be located in the
current user's temp directory which can easily be located using the environment variable %TEMP%.

7 COMMON SNIPPETS
This section provides snippets of configuration XML for UI++ to address common scenarios or challenges.

21

7.1 PREFLIGHT CHECKS
<Action Type="DefaultValues" />
<Action Type="Preflight" Title="Preflight checks">

<Check Text="WLAN Disconnected" CheckCondition='"%XWLANDisconnected%" = "True"' />
<Check Text="Not on battery" CheckCondition='"%XOnBattery%" = "False"' />
<Check Text="Minimum memory > 1GB" CheckCondition='%XHWMemory% >= 1024' />
<Check Text="CPU Supports Windows 8+" CheckCondition='%XCPUPAE% AND %XCPUNX% AND

%XCPUSSE2% = True' />
</Action>

7.2 REQUIRED APPLICATIONS BASED ON GROUP MEMBERSHIP
 <Software>
 …
 </Software>
 <Action Type="UserAuth" Title="User Authentication" Domain="lab1.configmgrftw.com"
GetGroups="True" MaxRetryCount="5"/>
 <Action Type="AppTree" Size="Tall" Title="Please choose your software">
 <SoftwareSets>
 <Set Name="Default">
 …
 </Set>
 <Set Name="Required" Condition='InStr ("%XAuthenticatedUserGroups%" & ",",
"Human Resources,") > 0'>
 <SoftwareGroup Id="abc123" Label="Human Resources Required Software"
Required="True">
 …
 </SoftwareGroup>
 </Set>
 </SoftwareSets>
 </Action>

8 COMPLETE EXAMPLES
The following examples present complete solutions using UI++. These are just examples; the end-result
can be achieved in multiple ways depending upon your goals. As with all things ConfigMgr, if what you
come up with works, is valid (and supported), and meets your goals, then use it.

8.1 EXAMPLE 1: WITHIN OSD
This first example is for naming a system during OSD as well as specifying an OU and timezone based on
a user selected location. The name for the system is the location code + W + the Dell Service tag. If no
service tag is found, the interactive user is prompted to enter an equivalent value. The following three
dialog boxes are shown – the second is only shown if a Dell service tag is not discovered:

22

Figure 12: Example 1, Input Dialog for Location Entry

Figure 13: Example 1, Input Dialog for Service Tag Entry

23

Figure 14: Example 1, Info Dialog for Final Information

8.1.1 XML Listing
The above dialogs are created using the following configuration XML:

<?xml version="1.0" encoding="utf-8"?>
<UIpp Title="Oil and Gas Co" Icon="UI++.ico">
 <Actions>
 <Action Type="DefaultValues" />
 <Action Type="WMIRead" Variable="ComputerName" Namespace="root\cimv2"
Class="Win32_ComputerSystem" Property="Name"/>
 <Action Type="WMIRead" Variable="DellServiceTag" Namespace="root\cimv2"
Class="Win32_SystemEnclosure" Property="SerialNumber"/>
 <Action Type="Input" Name="LocationChoice" Title="System Location">
 <ChoiceInput Variable="MyLocation" Question="Please choose a final location for this
computer" Required="True" >
 <Choice Option="East Coast Refinery" Value="ECRE"/>
 <Choice Option="East Coast Regional Office" Value="ECRO"/>
 <Choice Option="East Coast Project Office" Value="ECPO"/>
 <Choice Option="Midwest Refinery" Value="MWRE" />
 <Choice Option="Southern Refinery" Value="SORE" />
 <Choice Option="Southern Regional Office" Value="SORO" />
 <Choice Option="Corporate Headquarters" Value="COHQ" />
 <Choice Option="New England Refinery" Value="NERE"/>
 <Choice Option="Other" Value="MISC" />
 </ChoiceInput>
 </Action>
 <Action Type="Input" Name="ServiceTag" Title="No service tag found"
Condition='"%DellServiceTag%" = "" Or Len("%DellServiceTag%")'
 < 5 Or Len("%DellServiceTag%") > 7'>
 <TextInput Prompt="Service Tag" Hint="No service tag was found for this system,
please, enter one between 5 and 7 characters." Question="Please enter a service tag."
RegEx=".{5,7}" Variable="DellServiceTag" />
 </Action>

24

 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "ECRE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "ECRO"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "ECPO"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "MWRE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "SORE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "SORO"'>Central
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "COHQ"'>Central
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "NERE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "MISC"'>Central
Standard Time</Action>
 <Action Type="TSVar" Name="OSDDomainOUName"
>LDAP://OU=%MyLocation%,OU=AMERICAS,OU=Workstations,DC=domain,DC=com</Action>
 <Action Type="TSVar" Name="OSDDomainOUName" Condition='"%MyLocation%" =
"MISC"'>LDAP://OU=Build,OU=Workstations,DC=domain,DC=com</Action>
 <Action Type="Info" Title="System Name" Name="SystemName">
 <![CDATA[The name of this system will be %MyLocation%W%DellServiceTag%.
It will be placed in the OU at %OSDDomainOUName%
and will be set to the %OSDTimezone% timezone.]]>
 </Action>
 <Action Type="TSVar" Name="OSDComputerName">%MyLocation%W%DellServiceTag%</Action>
 </Actions>
</UIpp>

8.1.2 XML Breakdown
To see exactly what’s going on, the following listing breaks the XML down section by section with a
detailed explanation.

1. <?xml version="1.0" encoding="utf-8"?>
This is the default XML declaration specifying the version and the encoding of the file. Unless you have
a reason to change it, also include this as is.

2. <UIpp Title="Oil and Gas Co" Icon="UI++.ico">
This is the opening tag that begins defining functionality; this specifies the name to display in the
sidebar, “Oil and Gas Co” in this example and an icon to use in the sidebar also. This name and icon
appear in the sidebar for every dialog.

3. <Actions>
The opening tag for all Actions.

4. <Action Type="DefaultValues" />
The first action. This one gathers default values from the local system as defined in section 9.1.4
(“Default Values”).

5. <Action Type="WMIRead" Variable="ComputerName" Namespace="root\cimv2"
Class="Win32_ComputerSystem" Property="Name"/>

 <Action Type="WMIRead" Variable="DellServiceTag" Namespace="root\cimv2"
Class="Win32_SystemEnclosure" Property="SerialNumber"/>

25

These two actions read a couple of values from WMI, specifically the current Name attribute from
Win32_ComputerSystem WMI class and the SerialNumber attribute from the
Win32_SystemEnclosure WMI class; both are located in the root\cimv2 namespace. The Name
attribute contains the current computer name of the system and the SerialNumber attribute is
used by Dell to store the Dell service tag. These two value are stored in the variables named
ComputerName and DellServiceTag, respectively, by UI++ for later use. If run from within OSD,
the variables are task sequence variables.

6. <Action Type="Input" Name="LocationChoice" Title="System Location">
 <ChoiceInput Variable="MyLocation" Question="Please choose a final location for this
computer" Required="True" >
 <Choice Option="East Coast Refinery" Value="ECRE"/>
 <Choice Option="East Coast Regional Office" Value="ECRO"/>
 <Choice Option="East Coast Project Office" Value="ECPO"/>
 <Choice Option="Midwest Refinery" Value="MWRE" />
 <Choice Option="Southern Refinery" Value="SORE" />
 <Choice Option="Southern Regional Office" Value="SORO" />
 <Choice Option="Corporate Headquarters" Value="COHQ" />
 <Choice Option="New England Refinery" Value="NERE"/>
 <Choice Option="Other" Value="MISC" />
 </ChoiceInput>
 </Action>

This action display an Input dialog as shown in Figure 12.(Input dialogs are discussed in more
detail in section 9.1.8 (“Input”).) This particular dialog shows a single drop-box box, called a
ChoiceInput in UI++. The text “Please choose a final location for this computer” is shown above
the drop-box to prompt the user to make a choice. This drop-down contains choices for the nine
different locations defined using the Choice elements and is required; i.e., the user must make a
choice before being allowed to proceed. The value of whichever choice is selected by the user is
stored in the variable name MyLocation.

7. <Action Type="Input" Name="ServiceTag" Title="No service tag found"
Condition='"%DellServiceTag%" = "" Or Len("%DellServiceTag%")'

 < 5 Or Len("%DellServiceTag%") > 7'>
 <TextInput Prompt="Service Tag" Hint="No service tag was found for this system,
please, enter one between 5 and 7 characters." Question="Please enter a service tag."
RegEx=".{5,7}" Variable="DellServiceTag" />
 </Action>

This action shows the dialog from Figure 13. It shows a single text box and prompts the user to
enter a service tag. Note the condition attribute on the Action element which dictates whether or
not this action is processed at all. The condition checks for the existence of a value in the
DellServiceTag variable (which was populated in step 5 above) or whether the string value in this
variable is less than 5 characters long or more than 7 characters long. If any of these are true, then
the action is skipped.

Also note the RegEx attribute on the TextInput element. This defines a regular expression; the
value entered in the text box must match this regular expression in order for the user to proceed.
In this example, the regular expression checks for a strength of length 5, 6, or 7.

8. <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "ECRE"'>Eastern
Standard Time</Action>

26

 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "ECRO"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "ECPO"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "MWRE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "SORE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "SORO"'>Central
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "COHQ"'>Central
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "NERE"'>Eastern
Standard Time</Action>
 <Action Type="TSVar" Name="OSDTimezone" Condition='"%MyLocation%" = "MISC"'>Central
Standard Time</Action>

This series of nearly identical actions uses conditions to check the value of the MyLocation
variable set in step 6 when the user chose a location from the drop-down box. Only one of these
Actions will ever be processed because MyLocation can only equal one of the values. The action
that is processed sets the variable OSDTimezone to the proper value. Within a task sequence, the
OSDTimeZone task sequence variable is used to directly populate the timezone value in
unattend.xml and thus this will set the timezone used.

Note: The task of setting this variable could also have been done using alternate variables and
alternate values in step 6 but this example shows an alternate method that can be used for
something more in-depth.

9. <Action Type="TSVar" Name="OSDDomainOUName"
>LDAP://OU=%MyLocation%,OU=AMERICAS,OU=Workstations,DC=domain,DC=com</Action>

 <Action Type="TSVar" Name="OSDDomainOUName" Condition='"%MyLocation%" =
"MISC"'>LDAP://OU=Build,OU=Workstations,DC=domain,DC=com</Action>

These two actions set the value of the OSDDomainOUName variable (which similar to
OSDTimeZone is used to populate the join OU in the unattend.xml file by OSD). The first action
populates this variable using a standard LDAP path based upon the value of the MyLocation
variable previously set. This first action is always run, however, in the case where the MyLocation
value is “MISC”, the second action will run and populate a completely different value for the OU
(effectively over-writing what the first action set).

10. <Action Type="Info" Title="System Name" Name="SystemName">
 <![CDATA[The name of this system will be %MyLocation%W%DellServiceTag%.
It will be placed in the OU at %OSDOmainOUName%
and will be set to the %OSDTimezone% timezone.]]>
 </Action>

This action display the final notification dialog shown in Figure 14.

11. <Action Type="TSVar" Name="OSDComputerName">%MyLocation%W%DellServiceTag%</Action>
This final action sets the OSDComputerName variable which is used by the task sequence to set
the actual computer name of the system being deployed.

12. </Actions>
</UIpp>

These are the final closing tags: all elements in XML must have a closing tag or be closed.

27

8.2 EXAMPLE 2: A COMPLEX REAL-WORLD EXAMPLE WITHIN OSD
This is a real-world example with a mixture of different options and inputs, conditional options, as well as
setting various standard task sequence variables to control what happens during the task sequence.

Figure 15: Example 2, User Authentication

28

Figure 16: Example 2, A simple welcome dialog box showing the authenticated user’s name and a banner image

Figure 17: Example 2, Progress bar during the DefaultValues action

29

Figure 18: Example 2, Preflight checks all passed

Figure 19: Example 2, A simple data collection dialog showing all three possible types of user input

30

Figure 20: Example 2, KIOSK Option Dialog

Figure 21: Example 2, Device Settings for a kiosk system

31

Figure 22: Example 2, Device Settings for a non-kiosk, non-developer system

32

Figure 23:Example 2, Device Settings for a non-kiosk, developer possible system

33

Figure 24: Example 2, User Device Affinity input

Figure 25: Example 2, Static IP Address Input

8.2.1 XML Listing
<?xml version="1.0" encoding="utf-8"?>
<UIpp Title="Win Deployment" Icon="my.ico" Color="#441188" DialogIcons="Yes">
 <Actions>
 <Action Type="UserAuth" Title="User Authentication"
Domain="lab1.configmgrftw.com" GetGroups="False" MaxRetryCount="5" />
 <Action Type="Info" Name="myInfo" Title="Welcome" Image="my.png"
ShowCancel="True">

34

 <![CDATA[Welcome %XAuthenticatedUser%]]>
 </Action>
 <Action Type="DefaultValues" ValueTypes="All" ShowProgress="True">
 <Text Type="OS" Value="Retrieving Operating System information" />
 <Text Type="TPM" Value="Retrieving TPM information" />
 <Text Type="Net" Value="Retrieving Networking information" />
 <Text Type="VM" Value="Retrieving Virtualization information" />
 <Text Type="Asset" Value="Retrieving Asset information" />
 <Text Type="Domain" Value="Retrieving Domain information" />
 </Action>
 <Action Type="Preflight" Title="Preflight checks" ShowBack="True">
 <Check Text="WLAN Disconnected" CheckCondition='"%XWLANDisconnected%" =
"True"' />
 <Check Text="Not on battery" CheckCondition='"%XOnBattery%" = "False"' />
 <Check Text="Minimum memory > 1GB" CheckCondition='%XHWMemory% >= 1024' />
 <Check Text="CPU Supports Windows 8+" CheckCondition='%XCPUPAE% AND %XCPUNX%
AND %XCPUSSE2% = True' />
 </Action>

 <Action Type="Input" Name="ClientSetupInput" Title="Client Setup"
ShowBack="True">
 <TextInput Prompt="Computer Name" Hint="Enter the name for this system"
RegEx="[^\"/\\\[\]:;\|=,\+*\?><]{3,15}" Variable="ZZComputerName"
Question="Name for this system" />
 <ChoiceInput Variable="ZZBuildType" Question="Please select the build type
for this system" Required="True">
 <Choice Option="Windows 10 (x64)" Value="Win10x64" />
 <Choice Option="Windows 8.1 (x64)" Value="Win8.1x64" />
 <Choice Option="Windows 7 (x64)" Value="Win7x64" />
 </ChoiceInput>
 <CheckboxInput Variable="ZZKiosk" Question="This is a kiosk system"
CheckedValue="True" UncheckedValue="False" Default="True"/>
 </Action>

 <Action Type="TSVar" Name="ZZDeveloper"
Condition='LCase(Left("%ZZComputerName%", 4)) <> "dev-"'>"False"</Action>

 <Action Type="Input" Name="KioskOptionsInput" Title="Kiosk Options"
ShowBack="True" Condition='"%ZZKiosk%" = "True"'>
 <ChoiceInput Variable="ZZKioskType" Question="Please select the kiosk type
for this system" Required="True">
 <Choice Option="E-mail" Value="E-mail" />
 <Choice Option="Time" Value="Time" />
 <Choice Option="Other" Value="Other" />
 </ChoiceInput>
 </Action>

 <Action Type="TSVar" Name="ZZBitLocker" Condition='"%ZZKioskType%" =
"Other"'>"YES"</Action>

 <Action Type="TSVar" Name="UIppDeviceSettingsSize"
Condition='LCase(Left("%ZZComputerName%", 4)) = "dev-" Or "%ZZKiosk%" =
"False"'>"Tall"</Action>
 <Action Type="TSVar" Name="UIppDeviceSettingsSize"
Condition='LCase(Left("%ZZComputerName%", 4)) <> "dev-" And "%ZZKiosk%" =
"True"'>"Regular"</Action>

35

 <Action Type="Input" Size="%UIppDeviceSettingsSize%"
Name="DeviceSettingsInput" Title="Device Settings" ShowBack="True">
 <ChoiceInput Variable="ZZBitLocker" Question="Enable Bitlocker"
Required="True">
 <Choice Option="Yes" Value="YES" />
 <Choice Option="No" Value="NO" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZUDA" Question="Use User Device Affinty (UDA)"
Required="True" Default="False" Condition='"%ZZKiosk%" = "False"'>
 <Choice Option="Yes" Value="True" />
 <Choice Option="No" Value="False" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZDHCP" Question="Use a static IP Address or DHCP"
Required="True" Default="DHCP">
 <Choice Option="DHCP" Value="True" />
 <Choice Option="Static IP" Value="False" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZDeveloper" Question="Is this a developer build"
Required="True" Condition='LCase(Left("%ZZComputerName%", 4)) = "dev-"'>
 <Choice Option="Yes" Value="True" />
 <Choice Option="No" Value="False" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZHomeSystem" Question="Is this an off campus system"
Required="True" Condition='"%ZZKiosk%" = "False"'>
 <Choice Option="Yes" Value="True" />
 <Choice Option="No" Value="False" />
 </ChoiceInput>
 </Action>

 <Action Type="Input" Name="UDAInput" Title="User Device Affinity"
ShowBack="True" Condition='"%ZZUDA%" = "True"'>
 <TextInput Prompt="Users (comma separated)" Hint="Enter the primary users
for this system (comma separated)" Variable="ZZUDAUsers" Question="Primary users
for this system" />
 </Action>

 <Action Type="Input" Name="StaticIPInput" Title="Static IP Information"
ShowBack="True" Condition='"%ZZDHCP%" = "False"'>
 <TextInput Prompt="IP Address" Hint="Enter the static IP Address for this
system" Variable="ZZIPAddress" Question="Static IP Address" RegEx="((25[0-5]|2[0-
4][0-9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"/>
 <TextInput Prompt="Subnet Mask" Hint="Enter the subnet mask for this system"
Variable="ZZIPSubnet" Question="IP Subnet Mask" RegEx="((25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"/>
 <TextInput Prompt="IP Address" Hint="Enter the gateway for this system"
Variable="ZZIPGateway" Question="IP Gateway Address" RegEx="((25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"/>
 </Action>

 <Action Type="TSVar" Name="BDEInstallSuppress" >"%ZZBitLocker%"</Action>

 <Action Type="TSVar" Name="OSDAdapter0IPAddressList" Condition='"%ZZDHCP%" =
"False"'>"%ZZIPAddress%"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0SubnetMask" Condition='"%ZZDHCP%" =
"False"'>"%ZZIPSubnet%"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0Gateways" Condition='"%ZZDHCP%" =
"False"'>"%ZZIPGateway%"'</Action>

36

 <Action Type="TSVar" Name="OSDAdapter0EnableDHCP" Condition='"%ZZDHCP%" =
"False"'>"False"'</Action>
 <Action Type="TSVar" Name="OSDAdapterCount" Condition='"%ZZDHCP%" =
"False"'>"1"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0EnableWINS" Condition='"%ZZDHCP%" =
"False"'>"True"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0WINSServerList" Condition='"%ZZDHCP%" =
"False"'>"10.10.1.200,10.10.5.200"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0DNSServerList" Condition='"%ZZDHCP%" =
"False"'>"10.10.1.1,10.10.5.100,10.10.8.50"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0EnableDNSRegistration"
Condition='"%ZZDHCP%" = "False"'>"True"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0DNSDomain" Condition='"%ZZDHCP%" =
"False"'>"lab1.configmgrftw.com"'</Action>

 <Action Type="TSVar" Name="SMSTSUdaUsers" >"%ZZUDAUsers%"</Action>
 <Action Type="TSVar" Name="OSDComputerName" >"%ZZComputerName%"</Action>
 <Action Type="TSVar" Name="OSDBuildType" >"%ZZBuildType%"</Action>

 <Action Type="TSVar" Name="OSDType" Condition='"%ZZKiosk%" =
"True"'>"%ZZKioskType%"</Action>
 <Action Type="TSVar" Name="OSDType" Condition='"%ZZKiosk%" =
"False"'>"STD"</Action>
 <Action Type="TSVar" Name="OSDType" Condition='"%ZZHomeSystem%" =
"True"'>"Home"</Action>
 <Action Type="TSVar" Name="OSDType" Condition='"%ZZDeveloper%" =
"True"'>"DEV"</Action>

 </Actions>
</UIpp>

8.2.2 XML Breakdown
1. <?xml version="1.0" encoding="utf-8"?>
This is the default XML declaration specifying the version and the encoding of the file. Unless you have
a reason to change it, also include this as is.

2. <UIpp Title="Win Deployment" Icon="my.ico" Color="#441188" DialogIcons="Yes">
This is the opening tag that begins defining functionality; this specifies the name to display in the
sidebar, “Windows Deployment” in this example, an icon to use in the sidebar, and the color of the
sidebar also. This name and icon appear in the sidebar for every dialog. Additional, decorative icons
are displayed on every dialog corresponding to the functionality of the dialog/action.

3. <Actions>
The opening tag for all Actions.

4. <Action Type="UserAuth" Title="User Authentication" Domain="lab1.configmgrftw.com"
GetGroups="False" MaxRetryCount="5" />

The first action. As shown in Figure 15, this action prompts the interactive user to authenticate against
the lab1.configmgrftw.com active directory domain. The interactive user will only be allowed to try to
authenticate 5 times and group memberships will not be collected.

5. <Action Type="Info" Name="myInfo" Title="Welcome" Image="my.png"
ShowCancel="True">

 <![CDATA[Welcome %XAuthenticatedUser%]]>
 </Action>

37

Shows a generic welcome dialog box as shown in Figure 16. The user name entered in the previous
action used for AD authentication is used to populate the message in the dialog box and a cancel
button is shown to allow the user to cancel UI++. If canceled, UI++ will return an error code of 1223
(0x4c7) which is a standard Windows error code meaning “The operation was canceled by the user.”
This in turn will cause the task in the task sequence to error which may cause the entire task sequence
to fail.

6. <Action Type="DefaultValues" ValueTypes="All" ShowProgress="True">
 <Text Type="OS" Value="Retrieving Operating System information" />
 <Text Type="TPM" Value="Retrieving TPM information" />
 <Text Type="Net" Value="Retrieving Networking information" />
 <Text Type="VM" Value="Retrieving Virtualization information" />
 <Text Type="Asset" Value="Retrieving Asset information" />
 <Text Type="Domain" Value="Retrieving Domain information" />
 </Action>
Gathers all default values from the local system as defined in section 9.1.4 (“Default Values”). Figure
17 shows the optional progress bar dialog to ensure the user is aware of some background processing
taking place – customized messages are provided for each of the different types of data collected
during this action for display in the dialog.

7. <Action Type="Preflight" Title="Preflight checks" ShowBack="True">
 <Check Text="WLAN Disconnected" CheckCondition='"%XWLANDisconnected%" = "True"'
/>
 <Check Text="Not on battery" CheckCondition='"%XOnBattery%" = "False"' />
 <Check Text="Minimum memory > 1GB" CheckCondition='%XHWMemory% >= 1024' />
 <Check Text="CPU Supports Windows 8+" CheckCondition='%XCPUPAE% AND %XCPUNX% AND
%XCPUSSE2% = True' />
 </Action>
Performs 4 pre-flights checks based upon values collected by the DefaultActions action just prior to
this one – without the DefaultActions task preceding this one, none of these checks would pass. The
CheckCondition attributes define VBScript conditions that are evaluated to determine whether a
check passes or not. If comparing strings, ensure that they are enclosed in double-quotes otherwise
VBScript won’t treat the values as strings.

The back-button is also enabled on this action. If the user presses the back button, the Info welcome
dialog is re-shown, the DefaultValues action is not re-executed though until after the user presses OK
on the Info action. Thus this does result in the default values being re-collected so that if anything has
changed that would affect any of the checks, it would be properly reflected. For example, if the system
was not plugged into AC power when the user got to this action, a red X would be shown for the
second check. If the user plugs the system in, hits the back button, and then presses OK on the
welcome dialog, the pre-flight action will now properly reflect that the system is plugged into AC
power and allow the user to proceed. Because of this, it’s a good idea to place a generic information
dialog like this before the DefaultValues task otherwise there would be nowhere to go back to. You
also wouldn’t want to place a UserAuth action before the DefaultValues action as this would force
the user to re-authenticate.

8. <Action Type="Input" Name="ClientSetupInput" Title="Client Setup" ShowBack="True">
 <TextInput Prompt="Computer Name" Hint="Enter the name for this system"
RegEx="[^\"/\\\[\]:;\|=,\+*\?><]{3,15}" Variable="ZZComputerName"
Question="Name for this system" />
 <ChoiceInput Variable="ZZBuildType" Question="Please select the build type for
this system" Required="True">

38

 <Choice Option="Windows 10 (x64)" Value="Win10x64" />
 <Choice Option="Windows 8.1 (x64)" Value="Win8.1x64" />
 <Choice Option="Windows 7 (x64)" Value="Win7x64" />
 </ChoiceInput>
 <CheckboxInput Variable="ZZKiosk" Question="This is a kiosk system"
CheckedValue="True" UncheckedValue="False" Default="True"/>
 </Action>
As shown in Figure 19, this action displays a user data collection dialog with all three different types
of input types used: a text input field, a drop list and a checkbox. The text input box only allows valid
characters for NetBIOS names of length 3 to 15. The drop list shows three different options and the
checkbox is used to dictate what additional user input items are shown in subsequent dialogs.

9. <Action Type="TSVar" Name="ZZDeveloper" Condition='LCase(Left("%ZZComputerName%",

4)) <> "dev-"'>"False"</Action>
This sets the ZZDeveloper task sequence variable to False if the computer name provided in the last
action by the user is not prefixed with “dev-“. This must be done for cases where the back button is
used to get back to this dialog; without this it is possible that the variable is set to True in step 13
below but the user changes their mind, comes back to this dialog, and changes the system name
away from this convention.

Note the use of the LCase and Left VBScript functions in the VBScript expression used for the
condition to ensure the comparison is case insensitive and to only the first 4 characters of the string.

10. <Action Type="Input" Name="KioskOptionsInput" Title="Kiosk Options"

ShowBack="True" Condition='"%ZZKiosk%" = "True"'>
 <ChoiceInput Variable="ZZKioskType" Question="Please select the kiosk type for this
system" Required="True">
 <Choice Option="E-mail" Value="E-mail" />
 <Choice Option="Time" Value="Time" />
 <Choice Option="Other" Value="Other" />
 </ChoiceInput>
 </Action>

This simple dialog, shown in Figure 20, is only shown if the kiosk checkbox from the previous action is
selected; this is determined by the VBScript comparison expression defined in the Condition attribute.

11. <Action Type="TSVar" Name="ZZBitLocker" Condition='"%ZZKioskType%" =

"Other"'>"YES"</Action>

These actions set the Task Sequencer Variable ZZBitlocker to YES if the Kiosk type chosen in the
previous action is “Other”.

12. <Action Type="TSVar" Name="UIppDeviceSettingsSize"

Condition='LCase(Left("%ZZComputerName%", 4)) = "dev-" Or "%ZZKiosk%" =
"False"'>"Tall"</Action>
 <Action Type="TSVar" Name="UIppDeviceSettingsSize"
Condition='LCase(Left("%ZZComputerName%", 4)) <> "dev-" And "%ZZKiosk%" =
"True"'>"Regular"</Action>

These two actions set the value of the UIppDeviceSettingSize task sequence variable. This variable is
used in the next action to determine whether a tall or regular dialog will be shown. If the system is
possible a developer system (determined by the presence of a “dev-“ prefix of the computer name
entered in step 8 or is not a kiosk (determined by the checkbox choice made in step 8, then the next
action should show a tall dialog box to accommodate additional input. If the opposite is true, then the
number of items is not as great and a regular dialog can be used.

39

Note the use of <> in the condition of the second action above. These are XML entities that
equate to < and > (angle brackets or less than and greater than symbols). The actual symbols may not
be directly used because they have special meaning in XML and may throw off the XML parser or
editor that you are using.

13. <Action Type="Input" Size="%UIppDeviceSettingsSize%" Name="DeviceSettingsInput"

Title="Device Settings" ShowBack="True">
 <ChoiceInput Variable="ZZBitLocker" Question="Enable Bitlocker" Required="True">
 <Choice Option="Yes" Value="YES" />
 <Choice Option="No" Value="NO" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZUDA" Question="Use User Device Affinty (UDA)"
Required="True" Default="False" Condition='"%ZZKiosk%" = "False"'>
 <Choice Option="Yes" Value="True" />
 <Choice Option="No" Value="False" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZDHCP" Question="Use a static IP Address or DHCP"
Required="True" Default="DHCP">
 <Choice Option="DHCP" Value="True" />
 <Choice Option="Static IP" Value="False" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZDeveloper" Question="Is this a developer build"
Required="True" Condition='LCase(Left("%ZZComputerName%", 4)) = "dev-"'>
 <Choice Option="Yes" Value="True" />
 <Choice Option="No" Value="False" />
 </ChoiceInput>
 <ChoiceInput Variable="ZZHomeSystem" Question="Is this an off campus system"
Required="True" Condition='"%ZZKiosk%" = "False"'>
 <Choice Option="Yes" Value="True" />
 <Choice Option="No" Value="False" />
 </ChoiceInput>
 </Action>
Based upon the options chosen in previous dialogs, this action shows a dialog with varying inputs in
it; these are shown in Figure 21, Figure 22, and Figure 23. The different user inputs are added based
upon the condition defined on each.

Note: Drop-lists were used instead of checkboxes for the Yes/No questions. This was done before
the checkbox capability was added to UI++ and is perfectly valid – which method you use is up to
you and depends upon what you want to show to the user.

14. <Action Type="Input" Name="UDAInput" Title="User Device Affinity" ShowBack="True"

Condition='"%ZZUDA%" = "True"'>
 <TextInput Prompt="Users (comma separated)" Hint="Enter the primary users for
this system (comma separated)" Variable="ZZUDAUsers" Question="Primary users for this
system" />
 </Action>
This action displays a very simple dialog with one, free text input box. This dialog is only shown if the
drop list to use user device affinity is set to Yes from step 13. This option is only available on non-kiosk
systems.

40

15. <Action Type="Input" Name="StaticIPInput" Title="Static IP Information"
ShowBack="True" Condition='"%ZZDHCP%" = "False"'>

 <TextInput Prompt="IP Address" Hint="Enter the static IP Address for this
system" Variable="ZZIPAddress" Question="Static IP Address" RegEx="((25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"/>
 <TextInput Prompt="Subnet Mask" Hint="Enter the subnet mask for this system"
Variable="ZZIPSubnet" Question="IP Subnet Mask" RegEx="((25[0-5]|2[0-4][0-9]|[01]?[0-
9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"/>
 <TextInput Prompt="IP Address" Hint="Enter the gateway for this system"
Variable="ZZIPGateway" Question="IP Gateway Address" RegEx="((25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"/>
 </Action>
This action displays a dialog with three text input boxes for entering IP information as shown in Figure
25. Each text box has a regular expression ensuring the entered text is in the form of a proper IP
address. This dialog is only shown if the drop list for choosing DHCP is set to use Static IP from step
13.

16. <Action Type="TSVar" Name="BDEInstallSuppress" >"%ZZBitLocker%"</Action>
This action sets a task sequence variable name BDEInstallSuppress that is used within the Task
Sequence itself to enable or disable BitLocker.

17. <Action Type="TSVar" Name="OSDAdapter0IPAddressList" Condition='"%ZZDHCP%" =

"False"'>"%ZZIPAddress%"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0SubnetMask" Condition='"%ZZDHCP%" =
"False"'>"%ZZIPSubnet%"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0Gateways" Condition='"%ZZDHCP%" =
"False"'>"%ZZIPGateway%"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0EnableDHCP" Condition='"%ZZDHCP%" =
"False"'>"False"'</Action>
 <Action Type="TSVar" Name="OSDAdapterCount" Condition='"%ZZDHCP%" =
"False"'>"1"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0EnableWINS" Condition='"%ZZDHCP%" =
"False"'>"True"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0WINSServerList" Condition='"%ZZDHCP%" =
"False"'>"10.10.1.200,10.10.5.200"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0DNSServerList" Condition='"%ZZDHCP%" =
"False"'>"10.10.1.1,10.10.5.100,10.10.8.50"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0EnableDNSRegistration" Condition='"%ZZDHCP%"
= "False"'>"True"'</Action>
 <Action Type="TSVar" Name="OSDAdapter0DNSDomain" Condition='"%ZZDHCP%" =
"False"'>"lab1.configmgrftw.com"'</Action>
These actions set various action task sequence variables with the static IP address information entered
in Step 15 as well as other relevant information to support configuring a system with a static IP
address. These variables are used by the Apply Network Settings task within the task sequence to
populate the in use unattend.xml file which in then used by Windows setup to apply these settings.

18. <Action Type="TSVar" Name="SMSTSUdaUsers" >"%ZZUDAUsers%"</Action>
This action sets the SMSTSUdaUsers built-in task sequence variable.

19. <Action Type="TSVar" Name="OSDComputerName" >"%ZZComputerName%"</Action>
This action sets the OSDCOmputer built-in task sequence variable which in turn is used to name the
deployed system by setting the value in the in-use unattend.xml.

20. <Action Type="TSVar" Name="OSDBuildType" >"%ZZBuildType%"</Action>

41

<Action Type="TSVar" Name=" OSDBuildType " Condition='"%ZZKiosk%" =
"True"'>"%ZZKioskType%"</Action>

 <Action Type="TSVar" Name=" OSDBuildType " Condition='"%ZZKiosk%" =
"False"'>"STD"</Action>
 <Action Type="TSVar" Name=" OSDBuildType " Condition='"%ZZHomeSystem%" =
"True"'>"Home"</Action>
 <Action Type="TSVar" Name=" OSDBuildType " Condition='"%ZZDeveloper%" =
"True"'>"DEV"</Action>
These actiosn set various other task sequence variables that are used within the task sequence to
determine other customizations and tasks to run.
21. </Actions>

</UIpp>
These are the final closing tags: all elements in XML must have a closing tag or be closed.

9 CONFIGURATION FILE
The configuration file is XML based. The following table describes the valid elements.

Note: UI++ does not check the configuration file against an XSD schema so will most likely ignore
additional or out of place elements. This is not guaranteed though, so definitely test your
configuration file outside of OSD and before you use it production. Keep in mind that XML is case-
sensitive and that this format is not compatible with OSD++ 1.0 or OSD AppTree.

9.1 FEATURE CONFIGURATION & EXAMPLE SNIPPETS

9.1.1 Action Groups
Action Groups enable the grouping of other action elements into a single unit. There are two main reasons
to group actions together: organization and conditional execution of grouped actions.

All Action Groups should have names specified using the Name attribute. Action Groups may or may not
a have a Condition attribute that is evaluated. If an Action Group does have a condition attribute, sub-
actions of this group will be skipped if this condition does not evaluate to true.

An action group can have any number of sub-actions and all Action types may be part of an Action Group.

 <ActionGroup Name="Laptop Group" Condition="'%ChassisType%' = 'Laptop'">
 …
 </ActionGroup>

9.1.2 AD Authentication
This action is used to present a user authentication dialog to the interactive user. It contains three fixed
text input fields: User name, Password, Domain. The entered user name and password are authenticated
against the domain specified (which should be in FQDN format).

If successful, the next action in the configuration XML is processed. Additionally, the user name is stored
in the XAUthenticatedUser variable and domain name is stored in the XAuthenticatedUserDomain
variable. Using the MaxRetryCount attribute, only a set number of failed authentication attempts is
allowed after which an error message is displayed and the only option is to exit the dialog. This also returns
an access denied (5) error code which can be validated in a task sequence using the

2.10.0.0

42

_SMSTSLastActionRetCode task sequence variable or by checking the processes exit code when called
using another method.

Multiple AD security groups can also be specified for this action. If specified, in addition to authentication,
the user whose credentials are supplied must also be a member of one of the groups, specified in a semi-
colon separated list, within AD. This provides an authorization mechanism in addition to the
authentication.

Additionally, if authentication is successful, a task sequence variable named XAuthenticatedUserGroups
can be populated with a list of all groups that the authenticated user is a member of. This is a comma
separated list of groups in the usual <domain>\<group name> format. This can in turn be used as any
other task sequence variable can be (within UI++ or the rest of the task sequence) including within
conditions.

If desired, the prompt, question, and hint used for field as well as the regular expression can each be
individually changed from their values using an embedded Field element (see the third example below):

Example:

<Action Type="UserAuth" Title="User Authentication" Domain="lab1.com"
MaxRetryCount="5" Group="Test Group" GetGroups="True" />

Example of using XAuthenticatedUserGroups in a condition:

 <Action Type="Info" Name="myInfo" Title="Welcome %XAuthenticatedUser%"
Condition='InStr ("%XAuthenticatedUserGroups%" & ",", "Test,") > 0'>
 <![CDATA[UI++ 2.0 includes all of the power of UI++ 1.0 combined with UI
AppTree!
It's UI, interactive , evolved, and customized.
]]>
 </Action>

Example of selectively customizing the prompt, hint, question, and regular expression of the fields in the
UserAuth dialog:

 <Action Type="UserAuth" Title="User Authentication" Domain="lab1.configmgrftw.com"
Group="Test" GetGroups="False" MaxRetryCount="5">
 <Field Name="Username" Prompt="Custom Username Prompt" Hint="Custom Username Hint"
RegEx="[\w\-_.]+"/>
 <Field Name="Domain" Question="Custom Domain Question" />
 </Action>

Instead of using a text box for the domain name, a drop-down list can also be used to limit the choices
given to the user. The following example shows a domain list.

 <Action Type="UserAuth" Title="User Authentication" Domain="lab300.configmgrftw.com"
GetGroups="False" MaxRetryCount="5" DisableCancel="False">
 <Field Name="Domain" List="lab300.configmgrftw.com,lab200.configmgrftw.com"
AutoComplete="true"/>
 </Action>

2.9.3.0

43

Figure 26: A user authentication dialog with a drop-down list of domains

9.1.2.1 User Attributes
By specifying a list of attributes (comma or semi-colon separated) using the Attributes attribute, the
UserAuth action will query AD for the specified from the authenticated user’s account and populate a
variable for each. Each variable is named based on the name of the attribute:
XAuthUserAttribute_<attribute name>. Non-existent attributes and attributes without a value are
indistinguishable and neither populate a variable.

Note: The attribute names displayed in ADUC are not necessarily the underlying attribute names –
be sure to validate the real attribute names using the AD schema reference of the User class,
ADSIEdit, the ADUC Attribute Editor, or some other equivalent method.

The following example collects the AD attributes description and physicalDeliveryOfficeName (which is
labeled as just Office in ADUC) and populates the variables XAuthUserAttribute_description and
XAuthUserAttribute_physicalDeliveryOfficeName with their values (respectively).

<Action Type="UserAuth" Title="User Authentication"
Domain="lab300.configmgrftw.com" MaxRetryCount="5" Group="ConfigMgr Techs"
Attributes="description,physicalDeliveryOfficeName"/>

9.1.2.2 Computer Name Check
When prompting for and providing a new computer name using UI++, it is often desirable to ensure that
the computer name doesn’t already exist in Active Directory.

To use this feature, add and set the ADValidate attribute to True in the TextInput field of an Input action
that is intended to gather the computer name. A UserAuth action must occur before this Input action; the
credentials supplied during this UserAuth action are used to connect and authenticate to Active Directory.
No check will be performed if a UserAuth action does not precede this Input action. If a computer object
already exists in the domain authenticated to, then a warning message will be displayed to the interactive
user when they click the OK button and they won’t be able to move on from the Input action. The following
is a simple example and screenshot of the result when an existing name is entered.

 <Action Type="Input" Size="Regular" Name="ChooseYourDestiny" Title="Choose
your destiny" ShowCancel="True">

2.10.3.0

2.11.0.0

44

 <TextInput ADValidate="True" Prompt="System Name" Hint="Please enter the
desired name for this system." RegEx=".{3,15}" Variable="SystemName"
Question="Name of this system" />
 </Action>

Figure 27: Active Directory computer name check failure

Note: Only the last TextInput field within an Input action where ADValidate is set to True will be
validated against Active Directory.

9.1.3 AppTree
This action displays a customizable tree to the interactive user where they can choose packages and
applications to install. Multiple AppTree actions can be used as necessary.

The software items are defined in two phases. The first is using either an Application or Package element
within the top level Software element. These define the absolute properties for a specific software item
including the label (also known as the display name) as well as the ConfigMgr Application name or the
ConfigMgr package and program IDs. The Application name or package IDs must match exactly what is
defined in ConfigMgr. The order of the Application and Package elements also defines the order in which
the TS variables are created and thus their installation order. Note however that order is only relevant
within either applications or packages as a ConfigMgr task sequence install all applications in one fell
swoop and packages in one fell swoop.

Note: The top level Software element is a child of the UIpp element and thus a sibling to the
Actions element.

The Id attribute specified must be unique for each Application or Package element and GUIDs are
recommended although you can use any unique value as long as it unique within the configuration file.
Visual Studio includes a GUID generator and there are also multiple available on the web. GUIDs can of
course increase the difficulty of reading and deciphering the intent of the XML file though so consider this
when selecting your standard unique IDs.

 <UIpp Title="UI++" Icon="UI++2.ico">
<Software>
 <Application Id="59426C81-2638-47AF-82A7-AFEA795B47B7" Label="Adobe Reader XI"
Name="Adobe Reader XI"/>

45

 <Application Id="D30B903C-95ED-4AC9-8256-EFADD02FAFF3" Label="Notepad++ v6.6.8"
Name="Notepad++ v6.6.8" />
 <Package Id="9EBF5537-6A81-4651-86D4-4E51C8899F4D" Label=".NET Framework 4.5.2"
PkgID="ONE000100" ProgramName="Install .Net 4.5.2" />
 <Package Id="E6677316-BA46-4553-A8B8-0818875DFADB" Label="Internet Explorer 11"
PkgID="ONE000101" ProgramName="Install IE11" />
 <Application Id="7D2F6F33-38DA-404C-9E10-1A3845BE0270" Label="Royal TS V2"
Name="Royal TS V2" />
 <Application Id="9E30C625-9B5D-480D-AA55-6055F713AE29" Label="Microsoft Office
2013" Name="Microsoft Office 2013" />
 </Software>

<Actions>

…

 </Actions>
</UIpp>

The second part is to define SoftwareRef and SoftwareGroup elements inside a Set element.
SoftwareGroup elements define groups to show within the tree and can contain other SoftwareGroup
elements as well as SoftwareRef elements. SoftwareRef elements are references to Application or
Package elements and matched using the Id attribute. The order of Application and Package elements
determines display order only and not application installation order.

<Actions>

…

 <Action Type="AppTree" Title="Please choose your software">
 <SoftwareSets>
 <Set Name="Default">
 <SoftwareGroup Id="952025F7-BC5D-4D1C-960C-002B77323479" Label="Group A">
 <SoftwareGroup Id="07827D9D-8B57-444E-AC86-08D6DF527DC9" Label="Group B">
 <SoftwareRef Id="59426C81-2638-47AF-82A7-AFEA795B47B7" />
 <SoftwareRef Id="E6677316-BA46-4553-A8B8-0818875DFADB" />
 </SoftwareGroup>
 <SoftwareRef Id="7D2F6F33-38DA-404C-9E10-1A3845BE0270" />
 <SoftwareRef Id="9E30C625-9B5D-480D-AA55-6055F713AE29" />
 </SoftwareGroup>
 <SoftwareRef Id="D30B903C-95ED-4AC9-8256-EFADD02FAFF3" />
 <SoftwareGroup Id="71354335-19C7-4E12-A3D4-1B48EC91E7B4" Label="Group C">
 <SoftwareRef Id="9EBF5537-6A81-4651-86D4-4E51C8899F4D" />
 </SoftwareGroup>
 </Set>
 </SoftwareSets>
 </Action>

…

 </Actions>

Software chosen by the interactive user will populate one of two task sequence variable bases – one for
selected applications and one for selected packages – with a sequence number appended. This sequence
number is two digits for applications and three digits for packages, starts at 01 or 001, and is incremented
for each additional application or package selected. By default, the two base variables are XApplications

46

and XPackages but these can be overridden using the ApplicationVariableBase or PackageVariableBase
attributes. These base variable names should then be supplied to Install Application or Install Package
steps that occur later in the task sequence during the Windows portion. For more details on using base
variables for these task sequence steps, see the details section at http://technet.microsoft.com/en-
us/library/hh846237.aspx#BKMK_InstallApplication and http://technet.microsoft.com/en-
us/library/hh846237.aspx#BKMK_InstallPackage.

As just mentioned, this task does not install or initiate the installation of any software. It merely populates
task sequence variables which are then later used by the appropriate and applicable task sequence steps
to actually install the chosen software.

Figure 28: Initiating Chosen Application Installation

http://technet.microsoft.com/en-us/library/hh846237.aspx#BKMK_InstallApplication
http://technet.microsoft.com/en-us/library/hh846237.aspx#BKMK_InstallApplication
http://technet.microsoft.com/en-us/library/hh846237.aspx#BKMK_InstallPackage
http://technet.microsoft.com/en-us/library/hh846237.aspx#BKMK_InstallPackage

47

Figure 29: Initiating Chosen Package and Program Installation

9.1.3.1 Required Software and Groups
Software references or groups with the required attribute set to True are automatically selected and
cannot be unselected. If a software group is set as required, all of its children are also set to required.
Required groups and software in the tree will have their checkboxes greyed out and thus cannot be
unselected. Additionally, required groups and software reference items will have their icon changed as
listed in Table 1.

<SoftwareGroup Id="07827D9D-8B57-444E-AC86-08D6DF527DC9" Label="Group B" Required="True">
<SoftwareRef Id="59426C81-2638-47AF-82A7-AFEA795B47B7" />

</SoftwareGroup>
In the above example, the group is set to required which in turn sets the child software reference to
required also.

<SoftwareRef Id="59426C81-2638-47AF-82A7-AFEA795B47B7" Required="True"/>
In this example, the software reference is set to required.

9.1.3.2 Default Software and Groups
Software references or groups with the required attribute set to True are automatically selected; this is
only the default state however and the user can uncheck this items if they desire. If a software group is
set as default, all of its children are also set to default.

<SoftwareGroup Id="07827D9D-8B57-444E-AC86-08D6DF527DC9" Label="Group B" Default="True">
<SoftwareRef Id="59426C81-2638-47AF-82A7-AFEA795B47B7" />

</SoftwareGroup>
In the above example, the group is set as default which in turn sets the child software reference to default
also.

<SoftwareRef Id="59426C81-2638-47AF-82A7-AFEA795B47B7" Default="True"/>
In this example, the software reference is set as default.

48

Note: Setting either a group or software reference to default when it is already required is
meaningless.

9.1.3.3 Included Software
Applications and Packages can be set to include other Applications or Packages using the IncludeId
attribute. Multiple ids can be included by separating them with a semi-colon. Included software is only
processed for the first level. Thus, if A includes B and B includes C, A will not automatically include C. If
this is needed, simply specify both B and C as included in A.

If a software reference is selected by the end-user in the tree, all software references corresponding to
the applications and packages included in that application or package will also be selected. Additionally,
software references set as required or default will also automatically select those same included
applications and packages. Software references selected based on their inclusion in another selected item
cannot be unselected by the end-user; these software references will have their checkbox greyed and
their icon changed as listed in Table 1.

Unselecting a software reference with included items will also unselect those items unless they were
previously selected by the user, were selected because they were default, or are required.

Included items do not truly model dependencies. This is because it is possible for an application to include
a package and vice-versa. Depending upon how you add the corresponding Install Software and Install
Application steps to the task sequence, either all selected applications will be installed first or all selected
packages will be. Additionally, actual installation order or packages and applications as mentioned above
is determined by the order that they are listed within the Software element.

<Application Id="59426C81-2638-47AF-82A7-AFEA795B47B7" Label="Adobe Reader XI"
Name="Adobe Reader XI" IncludeId="D30B903C-95ED-4AC9-8256-EFADD02FAFF3"/>
<Application Id="D30B903C-95ED-4AC9-8256-EFADD02FAFF3" Label="Notepad++ v6.6.8"
Name="Notepad++ v6.6.8" />
<Package Id="9EBF5537-6A81-4651-86D4-4E51C8899F4D" Label=".NET Framework 4.5.2"
PkgID="ONE000100" ProgramName="Install .Net 4.5.2" />
<Application Id="7D2F6F33-38DA-404C-9E10-1A3845BE0270" Label="Royal TS V2"
Name="Royal TS V2" IncludeId="59426C81-2638-47AF-82A7-AFEA795B47B7;D30B903C-95ED-
4AC9-8256-EFADD02FAFF3"/>

In the above example, the first application, Adobe Reader XI, includes the second, Notepad++.
Additionally, the last application, Royal TS, includes the package for .Net as well as the Notepad++
application.

9.1.3.4 Hidden Software
Software references can be set to hidden by setting the Hidden attribute to True – groups cannot be set
to hidden. Hidden software references are just that, not shown in the tree and thus cannot be selected or
unselected by the end-user. Hidden software references can be set as required or default to automatically
select them. Hideen software references do inherit the default or required state of their parent groups
when the AppTree dialog is launched. They do not however toggle based upon the state of their parent.
Hidden software references can be selected or unselected by setting them as included or excluded in
Application or Package items (not software references).

<SoftwareRef Id="59426C81-2638-47AF-82A7-AFEA795B47B7" Hidden="True" Required="True"/>

49

This example shows a hidden software reference that is selected by default and thus will be included in
the task sequence variables created.

9.1.3.5 Icons
Table 1 lists the various icons used in the AppTree, their meanings, and whether or not the user can toggle
them.

Table 1: AppTree Icon Meanings

Icon Item Type Meaning Manual State Change Allowed?

 Group N/A Yes

 Group Required No

 Software Reference N/A Yes

 Software Reference Required No

 Software Reference Included No

 Software Reference Excluded No

9.1.4 Default Values
The DefaultValues action can be used anywhere within the Actions tag but is typically best placed at the
beginning as the first action. The below table (Table 2) shows all of the values set in this action.

Note: These variable names all begin with ‘X’ to avoid any conflicts with MDT variables (or any
other custom variable names). Many of these variables will contain the same information as MDT
variables and in fact many extract data from the same locations and so may be redundant if you
are using MDT. Because of the naming difference, there should be no conflicts, however.

To retrieve a subset of the default values, specify the ValueTypes attribute along with the category of the
values you wish to have retrieved per the categories listed in Table 2. Specify multiple categories to
retrieve using a comma separated list. Omit the ValueTypes attribute or set it to All to retrieve all default
values.

This example retrieves only TPM information:

<Action Type="DefaultValues" ValueTypes="TPM"/>

This example retrieves TPM, Asset, and OS information:

<Action Type="DefaultValues" ValueTypes="TPM,Asset,OS"/>

The following two examples retrieve all default values:

<Action Type="DefaultValues" ValueTypes="All"/>

<Action Type="DefaultValues" />

50

Table 2: Default Values

Variable Description Example Values Categor
y

XCPUArchitecture The architecture of the CPU x86, x641 Asset
XCPULogicalCount The number of logical CPUs in the system 8, 4, 2 Asset
XCPUNX Whether the CPU supports No Execute (NX) functionality True, False12 Asset
XCPUPAE Whether the CPU supports Physical Address Extensions (PAE) True, False12 Asset
XCPUSSE2 Whether the CPU supports SSE2 True, False12 Asset
XCPUVendor The vendor of the CPU GenuineIntel,

AuthenticIntel1
Asset

XHWAssetTag The asset tag of the hardware Various based on
the hardware
vendor

Asset

XHWChassisType The chassis type of the system Desktop, Laptop,
Server, Unknown1

Asset

XHWLenovoModel The Lenovo system model Various based on
the hardware

Asset

XHWManufacturer The manufacturer of the hardware Various based on
the hardware
vendor

Asset

XHWMemory The amount of physical memory in MB 16329, 4096 Asset
XHWModel The model of the hardware Various based on

the hardware
vendor

Asset

XHWProduct The product name of the hardware Various based on
the hardware
vendor

Asset

XHWSerialNumber The serial number of the hardware from the BIOS Various based on
the hardware
vendor

Asset

1 The values listed as examples are the only possible values for the variable
2 PAE, NX, and SSE2 are required for Win 8 and WinPE 4.0

2.11.0.0

51

XHWUUID The UUID of the hardware Asset
XOnBattery Whether the system is currently on battery or not True, False1 Asset
XSystemUEFI Whether the system is in UEFI mode or not True, False1 Asset
XSystemSecureBoot Whether Secure Boot is enabled or not True, False1 Asset
XCurrentComputerJoinedToDomain If the system is currently joined to an AD domain True, False1 Domain
XCurrentComputerDomain The current domain of the computer Unbounded set. Domain
XCurrentComputerName The current name of the computer Unbounded set. Domain
XCurrentComputerOUDN The current distinguished name of the computer’s OU in Active

Directory
Unbounded set. Domain

XComputerAzureDomainJoined Whether the system is Azure AD domain joined. True, False1 Domain
XComputerAzureDomainRegistered Whether the system is Azure AD registered by the current user. True, False1 Domain
XComputerAzureTenantId3 The Tenant ID that the system is joined or registered to. Unbounded set. Domain
XComputerAzureUser3 The user that registered or joined the system to Azure AD. Unbounded set. Domain
XComputerAzureDomain3 The Azure AD name that the system is joined or registered to. Unbounded set. Domain
XServiceStartModeSMSAgentHost3 The start mode of the ConfigMgr agent service. Auto, Manual,

Disabled1
Mgmt

XServiceStateSMSAgentHost3 The state of the ConfigMgr agent service. Stopped,
Start Pending,
Stop,
Continue Pending,
Pause Pending,
Paused,
Unknown1

Mgmt

XConfigMgrSiteCode3 The ConfigMgr site code that the agent is assigned to. Unbounded set. Mgmt
XConfigMgrAgentVersion3 The version of the ConfigMgr agent. Various. Mgmt
XConfigMgrCurrentMP3 The current MP that the ConfigMgr agent is assigned to. Unbounded set. Mgmt
XMDMAuthorityName3 The name of the MDM authority that the system is managed by. Unbounded set. Mgmt

XIPGateway A list of IP gateways for the system. 192.168.1.1 Net
XMACAddress A list of MAC Addresses for the system. 01:23:45:67:89:A

B
Net

3 Not created or set if not applicable to the system.

2.10.0.0

2.10.0.0
2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0
2.10.0.0
2.10.0.0
2.10.0.0

2.10.0.0
2.10.0.0
2.10.0.0

52

XIPSubnetMask A list of IP subnet masks for the system. 255.255.255.0 Net
XWLANDisconnected Whether the system is connected to a wireless network or not True, False1 Net
XWLANSSID The SSID for the wireless network the system is connected to. Unbounded set. Net
XWiredLANConnected If a wired network connection is detected. True, False1 Net
XOSArchitecture The architecture of the OS x86, x641 OS
XOSBuild The build number of the OS 9200, 2600 OS
XOSProduct The OS product type Workstation,

Server1
OS

XOSServerCore Is the OS product running server core True, False1 OS
XOSServicePack The OS (major4) service pack number 1, 2 OS
XOSSystemDrive The system drive C: OS
XOSVersion The Windows OS version 6.2, 5.1 OS
XOSWinPE Is the OS WinPE – indicates whether the TS is currently in WinPE True, False1 OS
XOSCBSRebootPending5 A reboot is pending because of a CBS maintenance action. True, False1 OS
XOSWUARebootPending5 A reboot is pending because of a Windows Update action. True, False1 OS
XOSPendingFileRenameOperations5 A reboot is pending because of a file rename operation. True, False1 OS
XOSPendingComputerRename5 A reboot is pending because of a computer rename. True, False1 OS
XOSCCMRebootPending5 A reboot is pending because of a ConfigMgr action. True, False1 OS
XOSRebootPending5 A reboot is pending for any of the previous five reasons. True, False1 OS
XSystemDriveBitLockerProtected5 Whether the system drive is protected by BitLocker 0, 1, 216 Security
XServiceStateWindowsFirewall The start mode of the Windows Firewall service. Auto, Manual,

Disabled1
Security

XServiceStartModeWindowsFirewall The state of the Windows Firewall service. Stopped,
Start Pending,
Stop,
Continue Pending,
Pause Pending,
Paused,
Unknown1

Security

4 To my knowledge, no OS service pack has ever used a minor number other than zero.
5 Not populated in WinPE.
6 See https://msdn.microsoft.com/en-us/library/windows/desktop/aa376483(v=vs.85).aspx#properties for a meaning of these values.

2.10.0.0

2.9.2.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376483(v=vs.85).aspx#properties

53

XFirewallEnabledDomain Whether the Windows Firewall is enabled for the Domain Profile. True, False1 Security
XFirewallInboundDomain The blocking policy for inbound traffic for the Windows Firewall

Domain Profile.
True, False1 Security

XFirewallOutboundDomain The blocking policy for outbound traffic for the Windows Firewall
Domain Profile.

True, False1 Security

XFirewallEnabledPrivate Whether the Windows Firewall is enabled for the Private Profile. True, False1 Security
XFirewallInbounPrivate The blocking policy for inbound traffic for the Windows Firewall

Private Profile.
True, False1 Security

XFirewallOutboundPrivate The blocking policy for outbound traffic for the Windows Firewall
Private Profile.

True, False1 Security

XFirewallEnabledPublic Whether the Windows Firewall is enabled for the Public Profile. True, False1 Security
XFirewallInboundPublic The blocking policy for inbound traffic for the Windows Firewall Public

Profile.
True, False1 Security

XFirewallOutboundPublic The blocking policy for outbound traffic for the Windows Firewall
Public Profile.

True, False1 Security

XFirewallCurrentProfiles The currently active Windows Firewall profiles. Public, Domain,
Private

Security

XServiceStateWindows
DefenderAntivirusService

The start mode of the Windows Defender service. Auto, Manual,
Disabled1

Security

XServiceStartModeWindows
DefenderAntivirusService

The state of the Windows Defender service. Stopped,
Start Pending,
Stop,
Continue Pending,
Pause Pending,
Paused,
Unknown1

Security

XDefenderAVEnabled Whether Windows Defender anti-virus is enabled. True, False1 Security
XDefenderASEnabled Whether Windows Defender anti-spyware is enabled. True, False1 Security
XDefenderNISEnabled Whether Windows Defender network intrusion is enabled. True, False1 Security
XDefenderFullScanAge The number of days since the last full Windows Defender scan. Number. Security
XDefenderAVSignatureAge The age of the Windows Defender signatures (in days). Number. Security
XDefenderEngineVersion The version of the Windows Defender scan engine. Various Security

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0
2.10.0.0
2.10.0.0
2.10.0.0
2.10.0.0
2.10.0.0

54

 XServiceStateWindowsUpdate The start mode of the Windows Update service. Auto, Manual,
Disabled1

Security

 XServiceStartModeWindowsUpdate The state of the Windows Update service. Stopped,
Start Pending,
Stop,
Continue Pending,
Pause Pending,
Paused,
Unknown1

Security

XWindowsUpdatesEnabled Whether Windows updates is enabled. True, False1 Security
XWindowsUpdateDefaultService What service Windows updates is using. Various. Security
XWindowsUpdateServer3 The WSUS server that Windows updates is using (if any). Unbounded set. Security
XTPMEnabled7 Whether the TPM chip is enabled True, False1 TPM
XTPMActivated7 Whether the TPM chip is activated True, False1 TPM
XTPMAvailable7 Whether a TPM chip was detected True, False1 TPM
XTPMOwned7 Whether the TPM chip is owned True, False1 TPM
XTPMSpecVersion7 The specification version of the TPM chip. See

https://msdn.microsoft.com/en-
us/library/windows/desktop/aa376484%28v=vs.85%29.aspx#propert
ies for exact details of this attribute.

2.0, 0, 1.16 TPM

XUserDisplayName5 The display name for current user from Active Directory or AzureAD. Unbounded set. User
XUserSAMAccountName5 The SAM account name (including domain) for the current user. Unbounded set. User
XUserPrincipalName5 The user principal name for the current user. Unbounded set. User
XHWVirtualMachineType Specifies the type of virtualization software used for the current

systems
Hyper-V,
VMWareESX,
VMWareOther,
VirtualBox, Xen,
OtherMicrosoft1

VM

7 Requires boot image of WinPE 4.0 or higher or the proper driver loaded in a full instance of Windows.

2.10.0.0

2.10.0.0

2.10.0.0

2.10.0.0
2.10.0.0
2.10.0.0

https://msdn.microsoft.com/en-us/library/windows/desktop/aa376484%28v=vs.85%29.aspx#properties
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376484%28v=vs.85%29.aspx#properties
https://msdn.microsoft.com/en-us/library/windows/desktop/aa376484%28v=vs.85%29.aspx#properties

55

9.1.5 External Call
This action initiates the command-line specified. The example below calls the vbscript named
QueryAD.vbs. What this script explicitly does is up to you. Location of the script is up to you but is best
placed in the same package as UI++, in the boot image with UI++ (if using UI++ as a pre-start command),
or in a separate package downloaded to the target system using the Download Package Content action in
ConfigMgr Current Branch (1602 and above).

<Action Type="ExternalCall" Title="External Command">cscript.exe //NOLOGO //B
QueryAD.vbs</Action>

Using an External Command action enables you to leverage existing scripts or other tools to perform a
specific action that UI++ is not capable of. Possible activities for these external commands include calling
a web service (which is much easier to do in PowerShell or VBScript), calling a driver installation routine,
or initiating a reboot – many more possibilities of course exist.

If calling PowerShell from within WinPE, make sure that PowerShell is included in the WinPE boot image
in use.

9.1.6 Error Info
The following snippet creates an error dialog box to inform the user of a fatal error or issue; it includes
some minor HTML formatting. Note that use of <![CDATA[and]]> tags to enclose the text to display. These
instruct the XML parser to ignore the contained content which is key when using any embedded HTML
tags as these would try to the interpreted by the XML parser otherwise. Line breaks are added to wrap
longer lines based upon spaces, periods, commas, forward slashes, and back slashes.

A cancel button is the only button shown on this dialog.

<Action Type="ErrorInfo" Name="SomethingBad" Title="Something went wrong>
<![CDATA[I’m sorry, but the computer overlords are not happy with you today

and this wizard cannot continue.

Have a nice day.]]>
</Action>

9.1.7 Info
The following snippet creates a user info dialog box; it includes some minor HTML formatting. Note the
use of <![CDATA[and]]> tags to enclose the text to display. These instruct the XML parser to ignore the
contained content which is key when using any embedded HTML tags as the XML parser would try to the
interpret them otherwise. Line breaks automatically are added to wrap longer lines based upon spaces,
periods, commas, forward slashes, and back slashes.

<Action Type="Info" Name="myInfo" Title="Welcome %Company%" Condition='"12" = "12"'>
<![CDATA[UI++ 2.0 includes all of the power of UI++ 1.0 combined with OSD

AppTree!
It's OSD, interactive , evolved, and customized.

Note that
your current time zone is %TimeZone%.]]>
</Action>

A timeout can be set on an Info action so that it is automatically dismissed after the specified period. Upon
automatic dismissal, you can configure the dialog to perform one of three activities:

• Act as if the user pressed the next button (which is the default) and move to the next action in
the configuration file.

2.9.0.0

56

• Act as if it was cancelled by the user and cause UI++ to return an error code of 1223 (“The
operation was canceled by the user”).

• Act as if it was cancelled by the user and cause UI++ to return a custom error code.

<Action Type="Info" Name="WelcomeInfo" Title=" Welcome" ShowCancel="True"
Timeout="120" TimeoutAction="Continue" >

<![CDATA[Velkommen – Welkom - Tere tulemast – Bienvenue – Willkommen –
Bienvenido – Välkommen]]>
</Action>

Figure 30: An Info dialog with a timeout

9.1.8 Input
The following snippet will create an Input dialog box with the specified information in the title:

 <Action Type="Input" Name="myInput" Title="User Input Time" Size="Tall">
 </Action>
Dialog boxes can contain as many input, drop-down list boxes, and info items that you need; however,
only the first three, six, or nine will be displayed in the dialog box based upon the size configured. Using
more than this number is valid though and can be useful when combined with conditions on the text or
list boxes.

9.1.8.1 TextInput
A TextInput enables the user to enter text in response to a prompt or question. The value entered by the
user is stored in a specified task sequence variable and can be validated using a standard regular
expression.

The following example prompts the user to enter a desired name for the system and validates that the
entered text is at least three characters long but no more than 15. The value entered is place in a task
sequence variable named SystemName.

 <Action Type="Input" Name="SystemNameInput" Title="Information" ShowBack="True">
 <TextInput Prompt="System Name" Hint="Please enter the desired name for this
system." RegEx=".{3,15}" Variable="SystemName" Question="Name of this system" />
 </Action>

57

Figure 31: An Input dialog with a single TextInput

9.1.8.2 ChoiceInput
This input type displays a drop-down list (also known as a combo-box, to the user from which they can
choose a value in response to a question or prompt. Free text-entry is not allowed. A default value can be
specified but is not required. Based on the user choice, the selected option or a representative value is
placed in the specified task sequence variable. Optionally, an additional, alternate value can be placed in
an alternate task sequence variable.

Choice sub-elements are used to define the choices presented in the drop-down list. Each Choice element
defines the text shown in the list and a value and alternate value to populate the main and alternate task
sequence variables if the user chooses this choice from the list. Specifying a value and alternate value are
optional; if no value is specified, the actual value of the Option attribute is used to populate the main task
sequence variable specified. If no alternate value is specified, then the alternate task sequence variable is
not populated with any value.

The following example prompts the user to choose an OU for the system and based upon their choice
populates the OUChoice and SystemPrefix task sequence variables.

 <Action Type="Input" Name="OUChoice" Title="AD Organizational Unit">
 <ChoiceInput Variable="OUChoice" AlternateVariable="SystemPrefix" Sort="False"
Question="Please choose an AD OU for this system" Required="True" AutoComplete="False">
 <Choice Option="Finance"
Value="OU=Finance,OU=Workstations,DC=lab300,DC=configmgrftw,DC=com" AlternateValue="FIN"
/>
 <Choice Option="Human Resources"
Value="OU=HumanResource,OU=Workstations,DC=lab300,DC=configmgrftw,DC=com"
AlternateValue="HR" />
 <Choice Option="Information Technology"
Value="OU=IT,OU=Workstations,DC=lab300,DC=configmgrftw,DC=com" AlternateValue="IT" />
 <Choice Option="Manufacturing"
Value="OU=IT,OU=Workstations,DC=lab300,DC=configmgrftw,DC=com" AlternateValue="MAN" />
 </ChoiceInput>
 </Action>

58

Figure 32: An Input dialog with a single ChoiceInput

Instead of using multiple Choice sub-elements to specify each item in the list, a single (or multiple)
ChoiceList sub-elements can be used. The ChoiceList element specifies comma-separated lists of items to
add to the drop-down list as well as corresponding comma-separated lists of values and alternate values.
This is useful to populate the list from an existing task sequence variable containing the list which in turn
can be populated from a variety of sources including an external file.

The following example shows loading the options and alternate values for a ChoiceInput from two
separate lists stored in task sequence variables. The resulting dialog is identical but the configuration is
more concise and potentially flexible.

 <Action Type="TSVar" Variable="olist">"DCSS,Probation Adult and Juvenile,Agriculture
Department,ComDev,County Counsel,Tax Collector,Parks & Open Space,Cultural
Services,DA,Elections,Public Defender,Fire,Auditor,MCHHS,Human
Resources,IST,Assessor,Library Administration,County Administrators Office,Public
Administrator,DPW,Retirement,Board of Supervisors"</Action>
 <Action Type="TSVar"
Variable="alist">DCSS,PROB,AG,CDA,CC,DF,POS,CU,DA,ELE,PD,FIRE,DF,MCHHS,HR,IST,ARC,LIB,CAO
,PA,DPW,RET,BOS</Action>

 <Action Type="Input" Name="OUChoice" Title="AD Organizational Unit">
 <ChoiceInput Variable="OUChoice" AlternateVariable="SystemPrefix" Sort="False"
Question="Please choose an AD OU for this system" Required="True" AutoComplete="True">
 <ChoiceList OptionList="%olist%" AlternateValueList="%alist%" />
 </ChoiceInput>
 </Action>

2.9.2.0

59

Figure 33: An Input dialog with a single ChoiceInput populated using lists

9.1.8.3 InputInfo
This type of input item on an Input dialog shows additional information to the user. It is completely free
text, can be one or two lines, and a text color can be specified.

This example builds on the one from the TextInput section above and adds some additional info for the
end user in the form of an InputInfo item.

 <Action Type="Input" Name="SystemNameInput" Title="Information" ShowBack="True">
 <TextInput Prompt="System Name" Hint="Please enter the desired name for this
system." RegEx=".{3,15}" Variable="SystemName" Question="Name of this system" />
 <InputInfo Color="#992233">Names must be between 3 and 15 characters
long.</InputInfo>
 </Action>

Figure 34: An Input dialog with a single TextInput and a single InputInfo

9.1.8.4 CheckBoxInput
This final input type is a simple checkbox. It populates a specified task sequence variable with one of two
values based upon whether the user checks the checkbox or not.

This example builds on the one from the TextInput section above and adds a checkbox. The task sequence
variable DomainJoin will be populated with a value of Yes if the user checks the checkbox or NO if the
checkbox is not checked.

60

 <Action Type="Input" Name="SystemNameInput" Title="Information" ShowBack="True">
 <TextInput Prompt="System Name" Hint="Please enter the desired name for this
system." RegEx=".{3,15}" Variable="SystemName" Question="Name of this system" />
 <InputInfo Color="#992233">Names must be between 3 and 15 characters
long.</InputInfo>
 <CheckBoxInput Variable="DomainJoin" Question="Should this system be domain
joined?" CheckedValue="Yes" UncheckedValue="No"/>
 </Action>

Figure 35: An Input dialog with a single TextInput and a single CheckboxInfo

9.1.9 Files
This action does one simple thing: reads the first line from a text file and places the value of that line in a
specified task sequence variable. It will also optionally delete that line from the text file. This is very useful
for generating unique system names during OSD from a list of names, prefixes, or suffixes listed in that
text file.

The following snippet reads the first line from the file named TextFile1.txt located in the root of the P
drive, places the value of that line in the MyValue task sequence variable, and then deletes the line. The
P drive of course needs to be accessible and the context in which UI++ is running must have read and write
access to the file. This is easily done using a Map Network Drive task in the task sequence before UI++ is
executed.

<Action Type="FileRead" DeleteLine="True" Variable="MyValue"
Filename="P:\TextFile1.txt" />

9.1.10 Preflight
This action performs a series of checks to ensure that the system is in a valid state before any additional
action is taken. These checks are particularly useful to validate a system before a task sequence is run
which causes major, irreversible changes to a system but may fail because of the current state of the
system; e.g., being on battery power or connected to a wireless network.

Preflight checks are comprised of any valid VBScript expression and text to display for the check. The
Preflight action displays a dialog box with each check listed (by its text) and the result of evaluating the
expression. If any expression evaluates to false, the action as a whole fails; if the user chooses to exit UI++
at this point, UI++ returns a failure code of ERROR_NOT_READY (decimal 21).

61

The following is a standard preflight example that check for WLAN connectivity, whether a system is on
battery, a minimum amount of memory, and whether the CPU supports Windows 8+ requirements.

 <Action Type="Preflight" Title="Preflight checks">
 <Check Text="WLAN Disconnected" CheckCondition='"%XWLANDisconnected%" = "True"' />
 <Check Text="Not on battery" CheckCondition='"%XOnBattery%" = "False"' />
 <Check Text="Minimum memory > 1GB" CheckCondition='%XHWMemory% >= 1024' />
 <Check Text="CPU Supports Windows 8+" CheckCondition='%XCPUPAE% AND %XCPUNX% AND
%XCPUSSE2% = True' />
 </Action>

To add tooltips for the actual checks shown in the dialog, set the Description attribute for each check
where a tooltip is desired. An example of this is shown in Figure 36.

Note: The look of these tooltips is slightly modified starting with version 2.11.0.1. Instead of
tooltips directly on the check text, an info icon is added before the text and the tooltip is shown
for this icon.

Figure 36: Preflight Check Descriptive Tooltip

To add tooltips to the check failed icon, set the ErrorDescription attribute for each check as desired. An
example of this is shown in Figure 37.

Figure 37: Preflight Check Descriptive Error Tooltip

62

9.1.10.1 Warnings
Checks or conditions that result in a warning state can also be added. These checks are identical in nature
to normal checks but result in a warning instead of a blocking failure. Warning checks can be added to
another check or can be used on their own. As noted, warning checks do not prevent the interactive user
from moving to the next action. The following slightly modified example adds a memory warning in
addition to memory error check as well as a UEFI warning. It also adds custom error and warning messages
as tooltips when hovering over the check’s status icon.

 <Action Type="Preflight" Title="Preflight checks" ShowOnFailureOnly="False"
ShowBack="True">
 <Check Text="WLAN Disconnected" CheckCondition='"%XWLANDisconnected%" = "True"' />
 <Check Text="Not on battery" ErrorDescription="Please ensure that the system is
connected to AC Power." CheckCondition='"%XOnBattery%" = "False"' />
 <Check Text="Minimum memory > 1GB" CheckCondition='%XHWMemory% >= 1024'
WarnCondition='%XHWMemory% >= 4096' ErrorDescription="Please ensure that the system has
at least 1 GB of memory." WarnDescription="For best results, this system should have at
least 4 GB of memory"/>
 <Check Text="CPU Supports Windows 8+" CheckCondition='%XCPUPAE% AND %XCPUNX% AND
%XCPUSSE2% = True' />
 <Check Text="UEFI Enabled" WarnCondition='"%XSystemUEFI%" = "True"'
WarnDescription="For security purposes, UEFI should be enabled."/>
 </Action>

Figure 38: Preflight Check with Warnings

9.1.10.2 Timeouts
A timeout can be set on a Preflight action so that it is automatically dismissed after the specified period.
This will only be displayed and thus work if none of the checks in the Preflight action have failed; if any
have failed, then the timeout countdown is not shown, and the dialog will not timeout automatically. If
there are warnings, no timeout countdown is displayed, and the dialog will not timeout unless
ContinueOnWarning is specified as the timeout action.

Upon automatic dismissal when the countdown timer expires, you can configure the dialog to perform
one of three activities:

• Act as if the user pressed the next button (which is the default) and move to the next action in
the configuration file.

2.11.0.0

2.11.0.0

63

• Act as if it was cancelled by the user and cause UI++ to return an error code of 1223 (“The
operation was canceled by the user”).

• Act as if it was cancelled by the user and cause UI++ to return a custom error code.

 <Action Type="Preflight" Title="Preflight checks" ShowOnFailureOnly="False"
ShowBack="True" Timeout="300" TimeoutAction="Continue">

Figure 39: Preflight Check With a Timeout Countdown

9.1.10.3 Refresh
Checks within a Preflight action explicitly depend on the computed results of the expressions configured
for each check. These expressions almost always rely on the values of variables captured in previous
actions; e.g., the DefaultValues action. Thus, a refresh of the Preflight action is meaningless without also
rerunning these previous actions to re-capture the values of the variables referenced in the expressions
which have hopefully changed.

The Refresh button on a Preflight action is enabled if that Preflight action meets the following criteria:

• The Preflight action is placed within an ActionGroup, i.e., the Preflight action element is a child
of an ActionGroup element

• The PreflightAction is not the first action in the ActionGroup.

When the refresh button is pushed, UI++ will return to the first action within the ActionGroup and
proceed as normal. This will rerun any actions within the ActionGroup that occurred before the Preflight
action. All actions that populate variables that the expressions in the Preflight action reference should be
placed before Preflight action within the same ActionGroup.

The following example shows a Preflight action that only depends on the variables from a DefaultValues
action. In this case, pressing the refresh button will rerun the DefaultValues action and then return to
the Preflight action while recomputing the check expressions defined in it.

 <ActionGroup Name="Preflight">
 <Action Type="DefaultValues" ValueTypes="Asset,OS,Network" ShowProgress="True"
/>

 <Action Type="Preflight" Title="Preflight checks" ShowOnFailureOnly="False"
ShowBack="True" ShowCancel="True">

2.11.0.0

64

 <Check Text="WLAN Disconnected" Description="To prevent issues during
deployment, a wired connection is required." ErrorDescription="Please disconnect
the wireless network from this system." CheckCondition='"%XWLANDisconnected%" =
"True"' />
 <Check Text="Not on battery" ErrorDescription="Please ensure that the system
is connected to AC Power." CheckCondition='"%XOnBattery%" = "False"' />
 <Check Text="Minimum memory > 1GB" CheckCondition='%XHWMemory% >= 1024'
WarnCondition='%XHWMemory% >= 40960' ErrorDescription="Please ensure that the
system has at least 1 GB of memory." WarnDescription="For best results, this
system should have at least 4 GB of memory"/>
 <Check Text="CPU Supports Windows 8+" CheckCondition='%XCPUPAE% AND %XCPUNX%
AND %XCPUSSE2% = True' />
 <Check Text="UEFI Enabled" WarnCondition='"%XSystemUEFI%" = "True"'
WarnDescription="For security purposes, UEFI should be enabled."/>
 </Action>
 </ActionGroup>

Figure 40: A Failed Preflight Action with a Refresh Button

Note: Using a GUI based action before and within the same ActionGroup as a Preflight action
works but may be awkward for the interactive user and may cause the back button to yield
unexpected results after the refresh button is used. For this reason, it is not recommended to
place GUI based actions before and within the same ActionGroup as a Preflight action.

9.1.11 SaveItems
This action saves or copies files to a specified location. There are five item types or files that it will save:

1. The SMSTS.log (including all previous smsts.log files that were created due to a rollover).
2. The UI++.log.
3. Any files in the current ConfigMgr agent log directory (%temp% in WinPE or if the ConfigMgr agent

is not installed).
4. Any specified files.
5. A full dump of all current task sequence variables and their values.

The following snippet saves the UI++.log file, all smsts.log files, and a dump of all task sequence variables
in a file called Vars.txt to the desktop of the user running UI++.

65

<Action Type="SaveItems" Items="UILog,TSVariables:Vars.txt,SMSTSLog"
Path="%userprofile%\Desktop" />

To specify additional log files from the existing ConfigMgr agent log location, add their file names to the
Items attribute:

<Action Type="SaveItems" Items="SMSTSLog,BDD.log,Gather.log"
Path="%userprofile%\Desktop" />

Wildcards can also be used to copy multiple files as can full paths and environment variables:

<Action Type="SaveItems" Items="UILog,*.log,%windir%\Panther*.log"
Path="%userprofile%\Desktop" />

The value of the Path attribute can be any valid UNC; however, keep in mind that the user running UI++
must have permissions to write to the UNC specified – UI++ can’t magically overcome permissions. If run
during OSD in ConfigMgr, this means that UI++ will run under the context of the local System account. If
run after the Setup Windows and ConfigMgr task and the installed OS is joined to the domain, then the
AD computer account of the computer will be used to access network resources. Adding a simple Map
Network Drive task to the task sequence before running UI++ is a simple way to ensure access to any
given UNC.

9.1.12 Switch
Similar to the SQL CASE statement and the C++ switch statement, the Switch action is an advanced way
to populate the values of a single or multiple task sequence variables based on one of the following:

• A static value.
• The value of a task sequence variable.
• The value of an expression.

This value is then compared, in sequential order, to a series of regular expressions – the cases. The first
regular expression to produce a match on the value sets the specified task sequence variables to the
specified values. A default case can also be specified to set task sequence variables to default values when
no cases are matched.

The following example sets the value of the TimeZone task sequence variable based upon the IP gateway
detected by a DefaultValues action. There are four separate cases including a default case. The first case
that matches the value is the one whose value is used to populate the task sequence variable.

 <Action Type="Switch" OnValue='Trim("%XIPGateway%")' DontEval="False" >
 <Case RegEx="10\.0\.50\.1">
 <Variable Name="TimeZone">Pacific Standard Time </Variable>
 </Case>
 <Case RegEx="10\.127(\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){2}">
 <Variable Name="TimeZone">Central Standard Time</Variable>
 </Case>
 <Case
RegEx="(\W|^)(10\.35\.10\.1|10\.35\.11\.1|10\.36\.10\.1|10\.36\.11\.1)(\W|$)">
 <Variable Name="TimeZone">Romance Standard Time</Variable>
 </Case>
 <Default>
 <Variable Name="TimeZone">Eastern Standard Time</Variable>
 </Default>

2.9.2.0

66

 </Action>

9.1.13 Registry
This action either reads data from the registry storing it into a variable or writes data to it.

The following snippet reads the CurrentVersion value from the key SOFTWARE\Microsoft\Windows
NT\CurrentVersion in the HKLM hive:

<Action Type="RegRead" Hive="HKLM" Key="SOFTWARE\Microsoft\Windows
NT\CurrentVersion" Value="CurrentVersion" Variable="CurrentVersion" />

The following snippet writes a string value named DefaultVal to the SOFTWARE\ConfigMgrFTW key in the
HKLM hive:

<Action Type="RegWrite" Hive="HKLM" Key="Software\ConfigMgrFTW" Value="DefaultVal"
ValueType="REG_SZ">Nicky Romero</Action>

9.1.14 Task Sequence Variable
This action creates new variables with the specified name and value. It can be useful to create simple
variables from static values or to set variable values dynamically.

The following snippet puts the static value “Finance” into the BusinessUnit variable.

<Action Type="TSVar" Name="BusinessUnit">Finance</Action>

You can also use the full power of VBScript to set the value of the variable.

<Action Type="TSVar" Name="LocationCode">Left("Amsterdam",5)</Action>

The value of the variable is defined by the value of the element and not the value of an attribute. Also,
you should typically embed the value of the element in a character data sub-element to avoid any XML
parsing issues. This is shown in the example for the Info action next.

Note: The value specified is initially treated as a VBScript expression. If VBScript cannot evaluate
the value, then the simple text of the value is placed in the variable; however, if the value is a
valid VBScript expression, VBScript will evaluate it. Seemingly simple text like abc-def is actually
valid VBScript (because the “-“ is seen as a minus sign) and the VBScript evaluation will thus result
in the variable being set to zero. To avoid this, enclose the value in double-quotes (") if necessary:

<Action Type="TSVar" Name="OSDComputerName">"Finance-123"</Action>

9.1.15 Software Discovery
This action discovers software installed in the current Windows installation and sets a specified variable
to True or False based on the existence of that software. Software is discovered from the Add/Remove
Programs section of the registry and excludes system components; both 64-bit as well as 32-bit software
is discovered on systems running 64-bit Windows but no explicit distinction is made between these.
Discovery of software is first based on the display name of the software and then optionally on the version.
Display name is matched using a case insensitive regular expression and version is matched using one of
a number of operators as listed in Table 3. These operators properly evaluate standard version numbers;
e.g., 1.2.3.4, 5.6.7 and 8.9.

67

Note: Version numbers with a greater number of sub-versions are greater than those with a less
number less sub-versions if the first sub-versions are otherwise equal; e.g., 5.1.50428.0 is greater
than 5.1.50428.

Table 3: Version Comparison Operators

Operator Meaning
eq Equals
gt Greater than
gte Greater than or equal to
lt Less than
lte Less than or equal to
ne Not equal
re Regular expression

The following example discovers the presence of three software items. The first is IIS Express based on a
direct name match and a regular expression for the version. The second is Microsoft Silverlight using a
regular expression for the display name and the gt operator for the version. The third is Snagit based on
a regular expression name match; version is not considered. Each also sets the specified variable to either
True or False based upon whether the discovery is successful or not. This variable can then be used in a
Task Sequence Variable List action, an AppTree Action, or anywhere else this makes sense.

 <Action Type="SoftwareDiscovery">
 <Match DisplayName="IIS 10.0 Express" Version="10.0.\d{4}" VersionOperator="re"
Variable="IISExpressFound" />
 <Match DisplayName="Microsoft Silver\w*" Version="5.1.50428" VersionOperator="gt"
Variable="SilverlightFound" />

<Match DisplayName="Snagit \d*" Variable="SnagItFound" />
 </Action>

9.1.16 Task Sequence Variable List
Using this Action, UI++ will create a sequence of variables populated with either application names or
package IDs and program names. These lists of variables are suitable for use within either an Install
Application or Install Package task within a task sequence.

The following snippet populates two lists: one for applications with XApplicationsA as its variable base for
applications and one with XPackagesA for packages as its variable base. Applications and packages are
specified by referring to the Id of the item defined earlier in the configuration XML using the Software
element and Application and Package sub-elements as described in section Error! Reference source not
found. (“Error! Reference source not found.”). This is the same section used by the AppTree action to
define software items. Applications and packages will be added to the correct list based upon their type
and in the same order that they are specified within the Software element.

 <Action Type="TSVarList" PackageVariableBase="XPackagesA"
ApplicationVariableBase="XApplicationsA">
 <SoftwareListRef Id="7D2F6F33-38DA-404C-9E10-1A3845BE0270"
Condition='%IISExpressFound%'/>
 <SoftwareListRef Id="D30B903C-95ED-4AC9-8256-EFADD02FAFF3" />

68

 <SoftwareListRef Id="2D4090CA-DFE3-4434-9E3A-622FDC817965" Condition='Not
%SilverlightFound%'/>
 <SoftwareListRef Id="9EBF5537-6A81-4651-86D4-4E51C8899F4D" />
 </Action>

To control the content of the lists, use conditions. This is a perfect time to use the variables created by a
SoftwareDiscovery action to dynamically build the list and create a mapping of software to install for
refresh scenarios where you would like to restore software previously installed on a system.

9.1.17 Variable Saving and Loading
This action loads variables from a data file or saves the current variables to a data file. Saving only works
if UI++ is executed outside of a task sequence; loading works within a task sequence or outside of it; if
used to load variables within a task sequence, all variables and their values become task sequence
variables available and manipulatable as all task sequence variables are. Read-only variables (those
beginning with an underscore) and variables beginning with an ‘X’ are never saved or loaded.

This action is useful for persisting variables and their values for whatever reason between executions of
UI++. The primary use case is to enable UI++ to be run before a refresh task sequence executed from
Software center; this is usually done using a program that a task sequence depends upon. Doing this allows
the UI++ interface to be shown without the use of ServiceUI.exe. Running UI++ in this way though prevents
UI++ from saving variables as task sequence variables within the task sequence. Saving the variables
during this initial execution of UI++ allows them to be re-loaded as the first step of a task sequence
however.

To save the existing variables (set based upon user input and other actions during the execution of UI++)
to a data file, add the following element as the last action within the UI++ configuration file:

<Action Type="Vars" Direction="Save"/>

To load the variables, create a separate configuration file with the following element as the first action in
a configuration file (other actions can be added as needed as well although remember that adding any
user interface during a portion of the task sequence run from within Windows will result in no actual UI
being shown to the interactive user and the task sequence hanging as it waits for user input based):

<Action Type="Vars" Direction="Load"/>

To use the above approach for a refresh task sequence, do the following.

1. Place both configuration files and UI++ into a package.
2. Create a program within this package to run UI++ using the first configuration file (use the /config

parameter to specify the first configuration file). Make sure the program is set to run Only when
a user is logged on, to Run with administrative rights, and to Allow users to interact with this
program on the Environment tab of the program.

69

3. Create a second program to run UI++ without any user interaction that loads the variables saved
by the first program. Use the /config parameter again to specify the second configuration file.

4. On the Advanced tab of the properties page for the refresh task sequence, select Run another
program first and choose the package created in step 1 and program created in step 2. Select
Always run this program first.

5. Within the refresh task sequence, at or new the beginning, add an Install Package task to run the
second program created in step 3.

9.1.17.1 TextBox
Textboxes are for free form user input in response to a question or prompt. Text in an input box can
validated against a regular expression. If no text is entered in the text box, a grey prompt will be shown if
specified. The following table (Table 4) shows the cues shown to a user when the text entered does not
match the regular expression.

70

If the variable specified for a text box already exists and contains a value, then this will be used as the
default value for the text box; this will override any values specified using the Default attribute.

Table 4: Textbox Cues When text does not match Regular Expression

Has Focus Cue
Yes Tooltip with hint text
Both Text is red
Both Red exclamation mark is shown after the text box
No Textbox border is colored red

The following snippet creates a text box prompting the user for the name to assign to the computer,
validates it against a regular expression, and assigns the value to the CompName variable. An optional
hint is displayed as a tooltip if the current input does not match the regular expression and an optional
prompt is also displayed when the text box is empty.

<TextInput Question="Please enter a computer name" Regex="[A-Z]\d{3}.*"
Variable="CompName" Hint="Please enter an uppercase letter followed by three
digits." Prompt="Computer Name" Default="%OSDComputerName%"/>

Notice the use the %OSDComputerName% variable in the Default attribute; this automatically sets the
default value of this text box to the value stored in the OSDComputerName task sequence variable at the
time UI++ is executed which is the system’s current name if UI++ is run in a refresh task sequence.

Regular expressions are beyond the scope of this documentation but many excellent articles and tutorials
are available on the web including http://www.regular-expressions.info/reference.html.

9.1.17.2 Drop-Down list Box
List boxes provide a drop-down for the user to choose from based on a question or prompt.

The following snippet creates a list box prompting the user to choose a business unit and putting the value
in an UI++ variable named BusinessUnit.:

<ChoiceInput Question="Are you in the finance department?" Variable="finance"
Required="True">

</ChoiceInput>

The initial value chosen in the list box is set using the Default attribute or is blank. If the Required attribute
is set to “True” and no Default value is specified, then a choice must be made in the list box by the user
for the OK button to be enabled in the dialog. If no Default value is specified and required is set to “False”,
then a red exclamation will be shown after the list box in the dialog.

If the variable specified for a ChoiceInput already exists and contains a value, then this will be used as the
default value for the drop-down list box; this will override any values specified using the Default attribute.

The choices presented in the list box are defined by Choice sub-elements. Based on the user’s selection,
the value of that choice is placed in the variables named using the Variable attribute. The following
snippet shows two simple options:

 <Choice Option="Yes" Value="TRUE" />
 <Choice Option="No" Value="FALSE" />

http://www.regular-expressions.info/reference.html

71

For list boxes with many possible choices, you can enable auto-completion using the AutoComplete
attribute. Setting this to True enables the user to type into the edit box of the list box. This will be
automatically completed based upon the available choices. If the text entered by the user does not match
any available choices, then no choice is selected and the user cannot continue until they select or enter a
valid choice.

9.1.17.3 Info
Info items provide a way to add arbitrary information or instructional text to an Input dialog. These Info
items can be one or two lines of text (one is default); you can customize the text color (using standard
web, RGB hex notation) and text will automatically wrap to the next line if necessary and if possible. You
can add a line-break by adding “\r\n” to the value specified.

The following snippet creates an Info item with the color Dark Blue and includes two lines of text:

<InputInfo Color="#00008B">Make it so.</InputInfo>

<InputInfo NumberofLines="2" Color="#00008B">Resistance is futile.\r\nYou will be
assimilated.</InputInfo>

9.1.18 WMI
The following snippet queries WMI for the model of the system.

<Action Type="WMIRead" Namespace="root\cimv2" Class="Win32_ComputerSystem"
Property="model" Variable="csmodel" />

The following snippet queries WMI for the state of the Windows Update Service.

<Action Type="WMIRead" Variable="WUAUServiceState" Namespace="root\cimv2"
Class="Win32_Service" KeyQualifier='Name="wuauserv"' Property="State"/>

The following snippet opens or creates the root\ITlocal WMI namespace. If then creates the Local_Config
WMI class if it does not exist. Finally, it creates or updates an instance of the Local_Config class by setting
the ComputerName and Tier values as specified. If an object already exists with the same key property
value, then this will overwrite the values in that object.

<Action Type="WMIWrite" Namespace="root\ITLocal" Class="Local_Config" >
 <Property Name="ComputerName" Type="CIM_STRING" Value="%ComputerName%"
Key="True"/>
 <Property Name="Tier" Type="CIM_UINT8" Value="%Tier%" Key="False"/>
</Action>

9.2 THE BACK BUTTON
A recent addition to UI++ is the ability to move backwards in the sequence of dialogs shown. You can
selectively add the back button to each UI Action by adding the ShowBack attribute and setting it to True
on an action that displays a dialog. For example, enabling the back button on an Input action would look
something like this:

 <Action Type="Input" Name="ClientSetupInput" Title="Client Setup" ShowBack="True">

The valid UI actions where you can add a back button include the following (and only the following):

• AppTree

72

• ErrorInfo
• Info
• Input
• PreFlight
• UserAuth

If a UI action is the first dialog shown, the back button will not be shown on the action’s dialog regardless
of the value of the ShowBack attribute.

Going back will preserve any of the user’s previous entries or selections with a few exceptions:

• For UserAuth actions, only the domain will be preserved.
• For PreFlight actions, there’s nothing to preserve and all checks will be re-run.
• For AppTree actions, all occurrences of a selected software item will be selected; i.e., if the tree

shows an application or package multiple times in different locations and the user chooses one,
if they then go back to the AppTree, all occurrences of that item will now be selected.

Going back jumps directly to the previous UI action that was shown and does not execute any intermediary
actions including UI actions that were not shown because a condition prevented them from being shown.
Going forward, all processing happens normally as if then back button was never pressed. User entries
and selections will be preserved with the same exceptions as noted above. Keep in mind though that if a
user enters some info on a dialog or makes a selection without pressing the OK button, those selections
will never be preserved.

If you want the Preflight action to re-check the state of the system based upon values generated by the
DefaultValues action, ensure that there is a UI action before the Preflight action. Place the DefaultValues
action before the PreFlight action but after this other UI action. As noted in the previous item, the
DefaultValues action will then be evaluated (or re-evalauted) every time the user goes forward from this
UI action thus forcing the values to be re-detected and repopulated.

9.3 VALUES AND VARIABLES
When run within a task sequence, all values are stored directly as task sequence variables and thus usable
within the task sequence after UI++ exits. Additionally, all valid task sequence variables are directly usable
from within UI++.

Note: This is a change from version 1 where variables were initially stored internally to UI++ only
and had to be explicitly written out as a task sequence variable.

If UI++ is run outside of a task sequence, then UI++ will transparently use an internal variable system. This
variable system is equivalent to the task variable system except that it is not available outside of a single
instance of UI++. If you need to persist these values for use in a future instance of UI++, you can easily add
them to the registry or WMI and then reload them.

Task sequence variables and internal variables can be directly used or referenced in any field within the
XML configuration file. UI++ will replace any occurrence of a variable name surrounded by percent signs
in the configuration file with the actual value of that variable. Thus is you have a variable named

73

CurrentVersion and you define the following in the title attribute for a dialog, “Upgrade from Windows
%CurrentVersion%”, UI++ will replace %CurrentVersion% with whatever value CurrentVersion represents.

To dump a complete list of variables and their values from with UI++, simply press Ctrl+F3 on any dialog.
This will create a text file named UI++ Variable Dump <Date> <Time>.txt in the same place that the UI++
log file is currently being written to. If the /disabletsvareditor switch is specified on the command-line,
dumping the variables in this way to a file will be disabled.

9.3.1 Variable Replacement
For any attribute or value of any element in the configuration file, you can insert the value of any
environment variable or task sequence variable (including anything that UI++ previously created or
retrieved) by inserting the name of the variable surrounded by percent signs (%). If an environment
variable and task sequence variable have the exact same name, the environment variable will take
precedence.

The examples in section 9.4 (“Conditions”) clearly show variable replacement for conditions. This same
technique can be done for any attribute in any of the tags.

9.3.2 Boolean Variable Negation
For any attribute that expects a Boolean value; i.e., True or False, prepending the value with an
exclamation point will negate the value specified. For example, the following adds a software item to an
AppTree:

<SoftwareRef Id="E6677316-BA46-4553-A8B8-0818875DFADB" Default="!%SnagitFound%"/>

The Default attribute for this example will evaluate to the opposite of the value of the SnagitFound
variable. Thus if SnagitFound is True, the opposite value, False, is instead used and vice-versa of course.
If SnagitFound isn’t a valid Boolean value, then False is passed.

Boolean variable negation is not applicable to Condition attributes. For Conditions attributes, simply use
the VBScript Not operator.

9.4 CONDITIONS
Every action along with many of the other configuration elements that are within the configuration file
can be executed conditionally enabling for the actions as well as the look and feel to be dynamically
customized at runtime. These conditions can be based on any valid VBScript expression and generally will
be based on the values of task sequence variables. Because conditions are based on VBScript all of the
functions of VBScript are available including normal string processing and math functions.

To add a condition to an element, simply add a Condition attribute. Conditions are valid for all elements
listed in Table 5Table 6: Valid XML Elements. If the condition specified evaluates to false, than whatever
the element represents will be skipped by UI++.

The following table shows the result of a false condition on each of the different type of elements.

Table 5: Valid Conditional Elements and False Condition Evaluation Effects

Element Effect
Action Action is completely skipped.

74

Check The check is not performed.
Choice Choice not added to the list box.
ChoiceInput List Box not added to input dialog.
DefaultValues Default values are not discovered or populated.
Match No software discovery for the item is performed.
RegRead Registry value is not written.
RegWrite Registry value is not read.
Set The software set and any contained groups or software references are not used to

populate the AppTree.
SoftwareGroup The software group and any other groups and software references it contains are not

added to the AppTree.
SoftwareRef The software reference is not added to the tree or the variable list.
TextInput Text box not added to the input dialog.
WMIRead WMI value is not read.
WMIWrite WMI value is not written.

Here are a few example conditions:

<Action Type="TSVar" Name="Company" Condition='"%OSDComputerName%" =
"TheBoss"'>Acme, Inc.</Action>

<Choice Option="Maybe" Value="MAYBE" Condition='Len("%FirstAnswer%") = 5'/>

 <TextInput Variable="FourthAnswer" Condition='"%SecondAnswer%" = "Dos"'
Question="What is your fourth answer?" />

Notice that the condition’s value is defined within single quotes instead of double quotes. This is perfectly
valid for XML and is required because VBScript surrounds string literals with double-quotes. Notice also
that the second example uses a VBScript function, Len, to evaluate the condition.

75

10 CONFIGURATION FILE REFERENCE
Table 6: Valid XML Elements8

Element Name Valid Attributes Valid Parents Valid Children Comments
Action Type* – Specifies the type of action to perform. Actions Various,

depends upon
the Action type.

The different actions
types are their valid
attributes are
described in Table 7.

ActionGroup Name – The name of the group. ActionGroup Action
ActionGroup

Groups actions into a
single unit.

Actions N/A UIpp Action Groups all of the
actions performed
during UI++. Each
child Action element
is performed in the
order that it occurs.

Application Id* – A unique identifier for the application. This Id value
is referenced by a SoftwareRef element to display the
Application in the AppTree action. This can be any
identifier you want it to be including a GUID as long as it’s
completely unique from other unique identifiers with the
configuration XML.
IncludeId – A semi-colon separated list of Application and
Package IDs that are included when this Application is
chosen. This can include hidden applications and
packages.
Label* – The label shown for the application in the
AppTree action.

Software N/A This defines the
properties for an
Application that can
be displayed to the
interactive user in an
AppTree action.

8 Attributes denoted with an asterisk (*) in Table 6 and Table 7 are required. All other attributes are optional.

76

Name* – The actual name of the Application as defined
in ConfigMgr. This must match exactly including spelling
and case.

Case CaseInsensitive – Performs a case insensitive match.
Default is False.
DontEval – If set to True, do not pass the value of the
element to VBScript for processing. Default is false.
RegEx* – The regular expression to compare against the
value of the OnValue attribute of the parent Switch
element.

Action (where Type =
Switch)

Variable The actual value set
if the regular
expression
comparison succeeds
is the value of this
element and not an
attribute.

Check CheckCondition* – The definition of the condition to be
checked. This can be any valid VBScript expression and
can include task sequence variables.
Description – Tooltip text to display on an info icon
displayed in front of the check’s text.
ErrorDescription – Tooltip text to display on the failed
status icon for the check if it fails the specified
CheckCondition.
Text* – The text to display describing the check that was
performed.
WarnCondition – The definition of the condition to be
checked for a warning. This can be any valid VBScript
expression and can include task sequence variables.
WarnDescription – Tooltip text to display on the warning
status icon for the check if it fails the specified
WarnCondition.

Action (where Type =
Preflight)

N/A Adds a check to a
Preflight action.

Choice Option* – Defines the text displayed in the drop-down
list box.
Value – The actual value assigned to the variable when
this choice is selected. If not specified, the value of the
Option attribute is used.
AlternateValue – A second value assigned to the variable
designated by the AlternateVariable attribute of the

ChoiceInput N/A Adds a choice to the
drop-down list box.

2.9.2.0

2.11.0.0

2.11.0.0

77

parent ChoiceInput element if this choice is chosen by
the interactive user.

CheckboxInput CheckedValue – The value to store in the specified
variable if the checkbox is checked. Default is True.
Default – The default value for the checkbox. If this value
matched the specified CheckedValue, then the checkbox
will be checked.
Question* – The question to display above the drop-
down list box.
Variable* – The variable name to store the value of the
chosen option in.
UnheckedValue – The value to store in the specified
variable if the checkbox is unchecked. Default is False.

Action (where Type =
Input)

N/A Adds a checkbox to
an input dialog.

ChoiceInput AlternateVariable – The variable name to store the
alternate value of the chosen option in.
AutoComplete – Enables automatic completion of the
text entered in the edit box portion of the combo box.
Default is false.
Default – The default choice in the list box.
DropDownSize – The maximum size of the drop-down
list; i.e., the maximum number of items shown in the drop
list at a single time. If there are more items in the list, the
drop-down will contain a vertical scrollbar. Default is 5.
Question* – The question to display above the drop-
down list box.
Required – Whether or not a value must be selected.
Sort – Sorts the items in the drop-down list box. Default
is True.
Variable* – The variable name to store the value of the
chosen option in.

Action (where Type =
Input)

Choice Adds a drop-down list
box to an input
dialog.

ChoiceList AlternateValueList – A comma-separated list of values
used to populate the AlternateVariable specified in the
parent ChoiceInput element based upon the choice made
by the user.

ChoiceInput N/A Adds a list of items to
the drop-down list
from a comma-

2.9.1.0

2.9.2.0

2.10.1.0

78

OptionList – A comma-separated list of values to add to
the drop-down list created by the parent ChoiceInput
element.
ValueList – A comma-separated list of values used to
populate the Variable specified in the parent
ChoiceInput element based upon the choice made by the
user.

separated list of
values.

Field Name* – The UserAuth dialog field to affect; must be one
of “Username”, “Password”, or “Domain”.
Hint – The custom message to display in the tooltip
shown when the text entered does not match the regular
expression; defaults are “Please enter your user name”,
“Please enter your password”, and “Please enter a
domain”.
List – This attribute is only valid for the Domain field. If
specified, this creates a drop-down list instead of a plain
text field that enables the user to choose a valid domain.
This list should be comma-separated. The value of the
Domain attribute of the parent Action element is used as
the default value. If this attribute has no value, then no
default value will be used and the user must choose a
value.
Prompt – The custom prompt text to display within the
text box when it is empty; defaults are “User name”,
“Password”, and “Domain”.
Question – The custom question to display above the
input box; defaults are “Enter your user name”, “Enter
your password”, and “Enter a domain”.
ReadOnly – For Domain fields only, setting this to true
will prevent the user from changing the value. Default is
false.
RegEx – The custom regular expression to use to validate
the text entered into the text box; defaults are
“[^\"/\\\[\]:;\|=,\+*\?<>]{3,15}”, “.+”, and “[\w\-_.]+”.

Action (where Type =
UserAuth)

N/A

2.9.3.0

79

InputInfo Color – The hexadecimal color to display the text in.
Defaults to #000000 (black).
NumberofLines – The number of lines of text to be
displayed. Default is 1.

Action (where Type =
Input)

N/A Adds info text to an
Input dialog.

Match DisplayName* – The display name to match when
searching for installed software. Can be a regular
expression.
Variable* – The variable to store the result of the
software search in. Value will be True or False.
Version – The version of the software to match against.
VersionOperator – The operator to use when comparing
versions. Default is eq (equals).

Action (where Type =
SoftwareDiscovery)

N/A Specifies the criteria
for finding installed
software.

Package Id* – A unique identifier for the package. This Id value is
referenced by a SoftwareRef element to display the
Package in the AppTree action. This can be any identifier
you want it to be including a GUID as long as it’s
completely unique from other unique identifiers with the
configuration XML.
IncludeId – A semi-colon separated list of Application and
Package IDs that are included when this Package is
chosen. This can include hidden applications and
packages.
Label* – The actual program name of the program within
ConfigMgr. This must match exactly including spelling
and case.
PkgId* – The actual package ID of the package within
ConfigMgr.

Software N/A This defines the
properties for a
Package and Program
that can be displayed
to the interactive
user in an AppTree
action.

Property Key* – Whether the property is a key property of the
class. Must be “true” or “False”.
Name* – The name of the property.
Type – The WMI type for the property. Can be any valid
WMI type including CIM_STRING or CIM_UINT8.
CIM_STRING is the default if not specified.
Value* – The value to assign to the property.

Action (where Type =
WMIWrite)

N/A Defines the
properties to write to
or create if a new
class is being created.

80

Set Name* – The name of the Set. SoftwareSets SoftwareGroup
SoftwareRef

Contains groups and
software to display to
the interactive user in
an AppTree action.

Software N/A UIpp Application
Package

This software
element contains the
applications and
packages that an
AppTree action can
reference and display
to the interactive
user.

SoftwareGroup Default – Automatically selects this group and all of its
children when the dialog is created. Default is false.
Id* – A unique identifier for the group.
Label* – The label shown for the group in the AppTree
action.
Required – Same as default but the group and its children
cannot be unselected. Default is false.

Set
SoftwareGroup

N/A A group to display in
an AppTree action.
Groups can contain
other groups or
software.

SoftwareListRef Id* – The Id of the software item previously defined in the
configuration XML file.

Action (where Type =
TSVarList)

N/A A reference to a
software item
previously defined
within the Software
element. These are
added to a task
sequence variable
list.

SoftwareRef Hidden – This software reference is hidden from the tree.
It will be selected if it is set as default or required (or its
parent group is set to default or required) or if it is
included by an application or package that is also
selected. Note that unselecting a group that contains a
hidden software reference does not in turn unselect that
hidden software reference. Default is false.

Set
SoftwareGroup

N/A A reference to a
software item
previously defined
within the Software
element. These are
shown to the

81

Id* – The Id of the software item previously defined in the
configuration XML file.
Default – Automatically selects this software reference
when the dialog is created. Default is false.
Required – Same as default but the software reference
cannot be unselected. Default is false.

interactive user in the
AppTree action.

SoftwareSets N/A Action (where Type =
AppTree)

Set A container for Set
elements

Text Type – The DefaultValues value type that the progress
text applies to.
Value – The text to display in the progress dialog for the
specified value type.

Action (where Type =
DefaultValues)

N/A If not specified,

TextInput ADValidate – Validates the input as a computer name
against Active Directory and flags it if a computer object
with the same name already exists. Uses the credentials
of the account entered in a previous UserAuth action.
Default is False.
Default – The default value of the text box.
ForceCase – Force the case of entered text to upper or
lower by setting this attribute Upper or Lower. Default is
to not force the case at all.
Hint – The message to display in the tooltip shown when
the text entered does not match the regular expression.
HScroll – Enables horizontal scrolling of the edit box
allowing up to 256 characters to be entered. Default is
False.
Password – Hides the user input similar to entering a
password. Default is false.
Prompt – The prompt text to display within the text box
when it is empty.
Question* – The question to display above the input box.
RegEx – The regular expression to use to validate the text
entered into the text box.

Action (where Type =
Input)

N/A Adds a text input box
to an input dialog.

2.11.0.0

82

Required – Whether or not a value must be selected.
Valid values include True, False, Yes, or No. If not
specified, this defaults to true.
Variable* – The variable name to store the resulting text
in.

UIpp AlwaysOnTop – Configures the UI++ dialogs to always be
on top of all other top-level windows. Default is True.
Color – The hexadecimal color of the sidebar used in all
dialogs. Defaults to #002147 (The University of Michigan
blue).
DialogSidebar – Shows or hides the left sidebar on all
dialogs. Default is true which displays the sidebar.
Flat – Shows dialogs using a flat look and feel. Default is
false.
Icon – The icon to display in every dialog box shown.
Title – The title used in the sidebar of every dialog box
shown.

N/A Apps
Actions

This is the root
element of the file.

Variable Name* – The variable name to set a value for.
DontEval – If set to True, do not pass the value of the
element to VBScript for processing. Default is false.

Case N/A This action statically
sets a variable; the
variable could be any
pre-existing variable
or a new one.

The actual value set is
from the value of this
element and not an
attribute.

The following table describes the different types of actions available. These are configured using Action elements with various Type values.

Table 7: Valid Actions8

Type Valid Attributes Comments
AppTree ApplicationVariableBase – The base

variable to populate with selected
Displays a dialog with a tree of selectable applications and packages.

2.9.5.0

2.9.1.0

2.10.3.0

2.11.0.0

83

applications. Defaults to XApplications if
not specified.
PackageVariableBase – The base variable
to populate with selected packages.
Defaults to XPackages if not specified.
ShowBack – Shows a back button on the
dialog enabling the interactive user to
return to the previous GUI based action.
Default value is false.
ShowCancel – Shows a cancel button
allowing the user to gracefully exit UI++
without proceeding. Default is false.
Title – The title of the user authentication
dialog.
Size – The height of the AppTree dialog
displayed. Valid Options include Regular,
Tall, and ExtraTall. Default is Regular.
Expanded – Sets whether the tree is
expanded or not when the action is first
launched. Default is True.

DefaultValues ShowProgress – Shows a dialog with a
progress bar so that the user is aware of
the background activity taking place.
Possible valid values are True and False.
Default value is True.
ValueTypes* – The category of values to
retrieve. Valid options include Asset,
Domain, Mgmt, Net, OS, Security, User,
VM, and All. To retrieve multiple
categories of values specify a comma
separated list of categories. Default value
of the attribute is All.

Discovers and populates default variables based on the current system state.
9

9 A complete list of all default values is listed in the “Default Values” section.

2.9.4.0

84

ErrorInfo Name – The name of the dialog box
Image – An optional image to display at
the top of the dialog. For best results, the
image should be 462x75 pixels and have a
white background.
InfoImage – Adds an optional image,
center and at the bottom of the dialog.
This image will appear on top of any
information displayed in the dialog if there
is any overlap.
ShowBack – Shows a back button on the
dialog enabling the interactive user to
return to the previous GUI based action.
Title – The title text of the dialog box.

Displays an error dialog box. The actual text shown is from the value of this
element and not an attribute. To use HTML tags, ensure that you use a
<![CDATA[tag (see the example) so that the XML parser doesn’t freak out.

ExternalCall MaxRunTime – The maximum allowed
run time in seconds for the command. If
the command does not finish in this
amount time, the process will be
forcefully terminated by UI++.
Title – The title of the external command.
This is shown in the log as well as the
progress bar but is not used to actually
execute the command-line.

Runs the specified external command. The command-line run is contained in
the value of the element and not an attribute. Enclosed this command in
<![CDATA[XML tags if necessary to prevent the XML parser from mis-
interpreting characters in the specified command-line.

FileRead DeleteLine – Whether the line should be
deleted after it is read from the file.
Default is True.
FileName* – The full path including the
file name of the text file to read from.
Variable* – The variable name to store the
resulting text in.

Reads the first line from the specified file, places the value into the specified
variable, and optionally deletes the line from the file.

Info Name – The name of the dialog box
Image – An optional image to display at
the top of the dialog. For best results, the

Displays an info dialog box. The actual text shown is from the value of this
element and not an attribute. To use HTML tags, ensure that you use a
<![CDATA[tag (see the example) so that the XML parser doesn’t freak out.

85

image should be 462x75 pixels and have a
white background.
InfoImage – Adds an optional image,
center and at the bottom of the dialog.
This image will appear on top of any
information displayed in the dialog if there
is any overlap.
ShowBack – Shows a back button on the
dialog enabling the interactive user to
return to the previous GUI based action.
Default value is false.
ShowCancel – Shows a cancel button
allowing the user to gracefully exit UI++
without proceeding. Default is false.
Title – The title text of the dialog box.
Timeout – The number of seconds after
which the dialog will be automatically
dismissed. Default is 0 which results in the
dialog not timing out at all.
TimeoutAction – The action to take when
the dialog timeout elapses. Default is
“Continue”. Other possible values include
“Cancel” or a custom return code which
also cancels the dialog and exits UI++
return the specified code

Both the Image and InfoImage attributes can specify local images or those
retrievable using an HTTP based URL; e.g.,
http://home.configmgrftw.com/images/coretechnew.png. Simply specify
the URL instead of a local path for either of these attributes.

Input ADValidate – Checks the text entered
against Active Directory to validate a
computer object with the same name
does not already exist. See the Computer
Name Check section for implementation
details. Default is False.
Name – The name of the dialog box
ShowBack – Shows a back button on the
dialog enabling the interactive user to

Displays a dialog with a series of customizable text input boxes,
combo/choice boxes, and info text.

2.9.0.0

2.9.0.0 2.9.0.0

2.11.0.0

http://home.configmgrftw.com/images/coretechnew.png

86

return to the previous GUI based action.
Default value is false.
ShowCancel – Shows a cancel button
allowing the user to gracefully exit UI++
without proceeding. Default is false.
Size – The height of the input dialog
displayed. Valid Options include Regular
and Tall. Default is Regular. A regular sized
Input dialog will display up to 3 controls
and a tall will display up to 6.
Title – The title text of the dialog box.

Preflight ShowBack – Shows a back button on the
dialog enabling the interactive user to
return to the previous GUI based action.
Default value is false.
ShowCancel – Shows a cancel button
allowing the user to gracefully exit UI++
without proceeding. Default is false.
Title – The title of the preflight dialog.
ShowOnFailureOnly – Shows the preflight
dialog if and only if one or more of the
Checks defined for it have failed. Default
value is false.
Size – The height of the preflight dialog
displayed. Valid Options include Regular
and Tall. Default is Regular.
Timeout – The number of seconds after
which the dialog will be automatically
dismissed. Default is 0 which results in the
dialog not timing out at all.
TimeoutAction – The action to take when
the dialog timeout elapses. Default is
“Continue”. Other possible values include
“ContinueOnWarning”, “Cancel” or a

Displays a dialog containing “preflight” checks. All checks must pass for the
dialog to be able to be dismissed successfully. If any checks do not pass,
dismissing the dialog results in an error code and a halt to UI++.

2.9.4.0

2.9.4.0

2.11.0.0

87

custom return code which also cancels the
dialog and exits UI++ return the specified
code.

RegRead Default – A default value to populate the
specified variable with if the registry read
operation cannot read a value or returns a
blank value.
Hive – The registry hive to read the value
from. Valid values include HKLM and
HKCU. HKLM is the default if not specified.
Key* – The full path to the registry key to
read from.
Reg64 – Read from the 64-bit registry
instead of the 32-bit registry if using the
32-bit version. Default is True.
Variable* – The variable name to store the
registry value in.
Value* – The name of the registry value to
retrieve.

Reads a value from the registry and places it into a variable.

RegWrite Hive – The registry hive to read the value
from. Valid values include HKLM and
HKCU. HKLM is the default if not specified.
Key* – The full path to the registry key to
read from.
Reg64 – Write to the 64-bit registry
instead of the 32-bit registry if using the
32-bit version. Default is True.
Type – The registry value type to be
written. If not specified, REG_SZ will be
used. Valid values include any valid
registry value type including REG_SZ and
REG_DWORD.
Value* – The name of the registry value to
retrieve.

Write values to the registry in the specified location. If the value already
exists, it will be overwritten.

88

SaveItems Items* – A comma-separated list of items
to save.
Path* – The path to save the items to.

Saves items to the specified location.
Valid values for Items include the following:

• SMSTSLog
• UILog
• TSVariables
• <filename>
• <path>\<filename>

By default, a value of TSVariables will use the file name of “UI++ Variable
Dump <time and date>.txt”. To specify a custom file name, append the
desired name after specifying TSVariables but separated by a colon; e.g,
TSVariables:vars.txt will name the file vars.txt.

Environment variables are valid for the <filename> and <path>\<filename>
values as well as the Path attribute.

Wildcards are valid for the <filename> and <path>\<filename> values.

SoftwareDiscovery N/A Searches the registry for installed software.
Switch DontEval – If set to True, do not pass the

value of the OnValue attribute to VBScript
for processing. Default is false.
OnValue* – The value to match against.
Can be a static value, a task sequence
variable or a VBScript expression.

This action matches the value specified in the OnValue attribute against a
series of regular expression cases. If any of the cases match, then the Variable
sub-elements are used to set the value of one or more task sequence
variables.

TSVar Name or Variable* – The variable name to
set a value for. (Variable and Name are
synonyms. Variable was added for
attribute naming consistency with other
actions and should be preferred. If both
are set in an action, the value of the
Variable attribute takes precedence to set
the name of the variable).

This action statically sets a variable; the variable could be any pre-existing
variable or a new one.

The actual value set is from the value of this element and not an attribute.

2.9.2.0

2.10.3.0

89

DontEval – If set to True, do not pass the
value of the element to VBScript for
processing. Default is false.

TSVarList ApplicationVariableBase -- The base
variable to populate with included
applications. There is no default value.
PackageVariableBase – The base variable
to populate with included packages. There
is no default value.

Creates a variable list populated with application or package information for
use with an Install Application task or an Install Package task respectively.
One or both of the attributes must have a value for this Action to be
processed.

UserAuth Attributes – A list of valid AD attributes to
gather from the user that successfully
authenticates using this action.
DisableCancel – Initially disables the
cancel button on the UserAuth dialog. If
set to true, the button will be re-enabled
if the maximum number of retries without
a successfully authentication occurs.
Default is false.
Domain – The default domain to
authenticate the user against. This should
be in the form of an FQDN.
Group – A semi-colon separated list of
domain security groups; the user must be
a member of one of the listed groups in
order to pass this Action.
Title – The title of the user authentication
dialog.
MaxRetryCount – The maximum number
of authentication attempts allowed.
ShowBack – Shows a back button on the
dialog enabling the interactive user to
return to the previous GUI based action.

Displays a dialog with three partially customizable fields: User name,
Password, and Domain.

Vars Direction – Specifies whether to load or
save the variables from or to a data file.

Loads variables from a data file or saves the current variables to data file.
Saving only works if UI++ is executed outside of a task sequence; loading

2.9.3.0

2.10.3.0

90

Valid values are “Load” and “Save”;
default value is “Save”.
Filename – The filename to load data from
or save data to. Defaults to
%temp%\ui++vars.dat.

works within a task sequence or outside of it. Read-only variables (those
beginning with an underscore) and variables beginning with an ‘X’ are never
saved or loaded.

WMIRead Class* – The WMI Class to read from.
Default – A default value to populate the
specified variable with if the WMI query
operation cannot read a value or returns a
blank value.
KeyQualifier – Specifies the WMI class
qualifier using the key attribute of the
class to identify a specific instance of a
class.
Namespace – The WMI namespace to
read from. Root\cimv2 is the default if
none namespace is specified.
Property* – The WMI Property to pull the
value from.
Variable* – The variable name to store the
WMI value in.
Query* – A valid WQL query.

Reads a value from WMI and places it into a variable.

There are two ways to retrieve info: by class instance or by query.

For class instance, you must specify the Class and Property. If multiple
instances of a class exist, then the first will be used unless a key qualifier is
specified. If a value is an array, the first value in the array is returned.

For a query, you must specify a Query and a Property. Ensure that the query
returns the property specified. If the query returns multiple instances, then
the first will be used.

WMIWrite Class* – The WMI Class to read from.
Namespace* – The WMI namespace to
write to. Root\cimv2 is the default if none
namespace is specified.

Opens or creates a namespace, a WMI class, and a WMI object instance
within that namespace. Use a child Property element to write attributes into
the opened or newly created object instance. If the class already exists then
the properties specified must match those from that class’s definition. If the
value of key property is the same, the instance will be overwritten; if the
values differs, then a new instance will be created.

2.9.2.0 2.9.2.0

91

11 CHANGE LOG HISTORY
The following is the change log prior to version 2.10.0.0.

2.9.6.0

• Fixed
o Preflight action bug; when showing the cancel button explicitly, the all checks passed

message would always be shown even if all checks did not pass.

2.9.5.0

• Updated
o The Switch action to be able to set one or multiple task sequence variables per Case

element using Variable sub-elements. The old format introduced in 2.9.2.0 is no longer
valid and should be updated in any existing XML configuration files.

• Fixed
o The WMIRead action so that a specified default value would correctly be used if the value

in WMI is blank.

2.9.4.0

• Updated
o Preflight, Input, and AppTree actions so that they can have a cancel button shown by

setting the ShowCancel attribute to True.

2.9.3.0

• Added
o Ability to specify a list of domains for the UserAuth action.
o Ability to disable the cancel button on the UserAuth action.

• Fixed
o Bug where hitting enter or escape during a DefaultValues action where the progress bar

is shown would cause a crash.

2.9.2.0

• Added
o Ability to use a query with the WMIRead action.
o Wired NIC detection during the DefaultValues actions.
o A new Switch action similar to the SQL CASE statement and switch statements found in

many programming languages.
o Ability to populate the choices and values in a ChoiceInput from a comma-separated list

of values.

2.9.1.1

• Fixed

92

o Bug with the /retry option causing it to be ignored.

2.9.1.0

• Added
o ChoiceInput option to enable or disable sorting of choices within the drop-down list box.
o A flat dialog mode that gets rid of the rounded dialog corners and the border.

• Fixed
o Memory leak when gathering usernames in the DefaultValues action.

2.9.0.0

• Added
o Extended description for Check items in Preflight actions that show as tooltips when

hovering over the Check text.
o Extended failure description Check items in Preflight actions that show as tooltips when

hovering over the failure icon.
o Info dialog action timeout.
o DefaultValues detects pending reboots based upon one of four different conditions.
o DefaultValues discovers the current user’s display name (from AD or AzureAD) if available

and the SAM Account name if available.
o /retry and /fallback command-line switches to specify the number of times that UI++ will

attempt to redownload a configuration file from a web location and a fallback
configuration file to use in case the download fails.

• Fixed
o Option to show Preflight action only if a check failed skipped action properly but did not

initiate next action.
o First time tooltip for the first TextInput field no longer shows in a random location on the

screen.
• Updated

o Tooltips for TextInput fields now show the hint text as a title along with an icon.
o The DefaultValues action now recognizes ChassisTypes with code 30, 31, 32 as laptops.
o Internal message string organization.
o Log message formatting for some log messages.
o The library used to download the configuration file from an http location to the same

library used to download images from an http location. Both http and https are now
supported.

2.8.5.0

• Added
o Auto-completion for user ChoiceInput items in Input actions.
o Option to only show Preflight action dialog if a check fails.
o Option to use a tall Preflight action dialog to show more preflight checks.
o DefaultValues now discovers whether a system is booted using UEFI and if SecureBoot is

enabled.
• Updated

93

o DefaultValues action properly collects OS info on Windows 10; specifically, XOSVersion,
XOSBuild, and XOSServicePack now collect info from WMI instead of the deprecated
Windows API for this.

2.8.2.1

• Fixed
o Bug in UserAuth action that prevented groups from being checked and the

XAUthenticatedUser and XAUthenticatedUserDomain variables from being populated.

2.8.2.0

• Added
o Ability to load Info action images from an HTTP location.

• Updated
o Small code updates to clean up after failed authentication attempts.

2.8.1.0

• Added
o Added a do not evaluate option to the TSVar action to prevent the value being set from

VBScript processing.
• Updated

o The DefaultValues action now gathers IP Addresses, IP Subnet Masks, Default IP Gateway,
and MAC Addresses.

o Changed the method that clears memory of user name and password after an
authentication attempt in a UserAuth action.

o The TSVar action now accepts either Name or Variable as an attribute to name the task
sequence variable being set. This was done for naming consistency. Variable should be
preferred and if both are set, Variable takes precedence.

2.8.0.0

• Added:
o A new FileRead action that reads the first line from a specified text file, places the line’s

value into a specified task sequence variable, and then optionally deletes the line from
the text file.

o A new ErrorInfo action that displays a final error message to the interactive user along
with a cancel button that exits UI++.

o A new ExternalCall action that calls an external command-line.

2.7.3.0

• Added:
o Ability to add a static image to the Info action dialog.

• Fixed:
o Conditions to individual Preflight Check items now work.

94

o Properly set the first input control on Input action dialogs to the first item even when all
items are valid and the OK button is enabled.

o Modified banner image display on the Info action dialog so that the background is
transparent when using a smaller image.

o Issues introduced with adding the progress bar to the DefaultValues action.

2.7.2.2

• Fixed:
o Issues introduced with adding the progress bar to the DefaultValues action.

2.7.2.0

• Added:
o A checkbox item on an Input action.
o An optional progress bar for the DefaultValues action with customizable progress text.

• Fixed:
o Bug where not all input items on an Input action dialog would trigger validation. This

would prevent the OK button from being enabled even though all user input was valid.
o The SoftwareListRef element is properly used instead of the SoftwareRef element for

TSVarList Actions.
o Fixed collection method for the processor architecture for the DefaultValues action.
o Fixed a bug that caused a crash if more inputs are added to an Input action dialog than it

can display.

2.7.1.0

• Added:
o The ability to add a back button to all UI actions.
o Ability to disable the domain field on a UserAuth action.

2.7.0.1

 Fixed:

o Loading variables previously saved using a Vars action outside of a task sequence were
not loaded using a Vars Action during a task sequence.

2.7.0.0

• Added:
o Boolean Variable Negation
o Software Discovery
o Task Sequence Variable List creation
o Default values for WMIRead and RegRead actions
o Optional branding banner image to Info action dialogs
o Default value creation for TPM state
o Ability to retrieve a subset of the default values
o Default Value specifying the virtual machine type

95

• Fixed:
o Multiple bugs when using UI++ as a pre-start command.
o Minor WMI read and write updates to properly release resources.

• Updated:
o Reduced the size of the drop-list for combo-boxes in Input Actions to a maximum five

shown values.
o All icons

2.4.5.5

• Added:
o Command-line switch to disable use of the Task Sequence variable editor or dumping the

variables to a file.
• Fixed:

o The OK button on the pre-flight dialog was not default and thus did not respond to
pressing the Enter key.

o WMI Write operation bug.

2.4.5.0

• Updated:
o User Info dialog to break long lines if needed on commas, periods, forward slashes and

backslashes.
o Default regular expression used for the username field adjusted to allow additional

characters per https://msdn.microsoft.com/en-us/library/bb726984.aspx.
o Internal XML parsing library, PugiXML to version 1.6.
o Default value for text input and choice input on Input action dialogs is automatically set

to a previous value for the input elements variable if one exists.
• Added

o Ability to customize the prompt, hint, and question as well as the regular expression used
to validate the input in the username, password, and domain fields of a UserAuth dialog.

o New action to save and load variables and their values to or from a data file. This allows
running UI++ as a program that a Task Sequence depends upon to collect user information
in the full OS, save the collected info, and then load it for use during the task sequence.

2.4.0.0

• Bugfixes:
o Package variables now correctly have three digits instead of two
o Corrected the UserAuth action so that group members are properly returned even if the

group check option is not used
• Added:

o Ability to read from and write to the 64-bit registry if using the 32-bit version
o Membership check in one of a list of groups instead of just a single group
o Set AppTree to not expanded by default
o Cancel button on UserAuth action
o Optional cancel button on User Info action

https://msdn.microsoft.com/en-us/library/bb726984.aspx

96

o Add a software reference to the same software item multiple times in an AppTree
o Set a TextInput item to show as a password field hiding user input
o Version output to log file at the start of running

• Re-enabled:
o Inclusions in AppTree (exclusions are still disabled)

2.3.0.5

 Bugfix for running in WinPE on Windows Server without WLAN capabilities.

2.3.0.0

• Bugfixes:
o Regular expression case insensitivity
o WinPE detection

• Added:
o WLAN and SSID detection
o Current computer name , computer domain, and computer OU detection
o Authenticated user’s group membership detection during the ADAuth action
o Added Preflight Action
o Info fields to the Input [dialog] action
o Ability to change accent color of all dialog boxes
o Ability to remove icon from top right corner of dialog boxes
o Common snippet section in this document to provide useful snippets

• Removed:
o (Temporarily) Inclusions and exclusions from the AppTree action.

2.2.0.0

• Updated and reorganized this documentation a bit.
• Added extended AppTree capabilities

o Default items
o Required items
o Hidden items
o Included items

• On-demand task sequence variable dump to a text file
• Large sizes for the Input and AppTree action dialogs
• Use of a configuration file from an HTTP URL.

2.1.0.0 (Beta 2) Release

• Added basic AppTree functionality
• Added Registry Write capabilities
• Added Required attribute for user input
• Updated icons
• Minor bugfixes
• Included non-debug exes in download

97

2.0.1.0 Beta Release

• Added WMI Read and Write capabilities
• Added user authentication against AD

2.0.0.1 Private Beta Release

• Initial beta release

12 KNOWN ISSUES
The following is a list of currently known issues and workarounds in the current version.

Issue Workaround
When using inclusions, if there is a circular chain
of included items and one of the items in this chain
is also set as default, all items will be treated as
required.

Don’t use circular inclusion chains.

Random crashes in WinPE 10 1511 mainly on UEFI
systems.

Don’t use WinPE 10 1511 – it’s buggy and I can’t
fix that.

Please submit other issues encountered via the contact form at http://blog.configmgrftw.com/contact/.

13 LICENSE
This application is released subject to the following license:

Microsoft Public License (Ms-PL)

This license governs use of the accompanying software. If you use the software, you accept this license. If
you do not accept the license, do not use the software.

1. Definitions

The terms "reproduce," "reproduction," "derivative works," and "distribution" have the same meaning
here as under U.S. copyright law.

A "contribution" is the original software, or any additions or changes to the software.

A "contributor" is any person that distributes its contribution under this license.

"Licensed patents" are a contributor's patent claims that read directly on its contribution.

2. Grant of Rights

(A) Copyright Grant- Subject to the terms of this license, including the license conditions and limitations
in section 3, each contributor grants you a non-exclusive, worldwide, royalty-free copyright license to
reproduce its contribution, prepare derivative works of its contribution, and distribute its contribution or
any derivative works that you create.

http://blog.configmgrftw.com/contact/

98

(B) Patent Grant- Subject to the terms of this license, including the license conditions and limitations in
section 3, each contributor grants you a non-exclusive, worldwide, royalty-free license under its licensed
patents to make, have made, use, sell, offer for sale, import, and/or otherwise dispose of its contribution
in the software or derivative works of the contribution in the software.

3. Conditions and Limitations

(A) No Trademark License- This license does not grant you rights to use any contributors' name, logo, or
trademarks.

(B) If you bring a patent claim against any contributor over patents that you claim are infringed by the
software, your patent license from such contributor to the software ends automatically.

(C) If you distribute any portion of the software, you must retain all copyright, patent, trademark, and
attribution notices that are present in the software.

(D) If you distribute any portion of the software in source code form, you may do so only under this license
by including a complete copy of this license with your distribution. If you distribute any portion of the
software in compiled or object code form, you may only do so under a license that complies with this
license.

(E) The software is licensed "as-is." You bear the risk of using it. The contributors give no express
warranties, guarantees or conditions. You may have additional consumer rights under your local laws
which this license cannot change. To the extent permitted under your local laws, the contributors exclude
the implied warranties of merchantability, fitness for a particular purpose and non-infringement.

	2 What is it
	3 Where Can I Get It
	4 Current Change Log
	5 What UI++ Does
	5.1 Dialogs
	5.1.1 Info
	5.1.2 Error Info
	5.1.3 Input
	5.1.4 AppTree
	5.1.5 Preflight
	5.1.6 AD Authentication

	5.2 Registry
	5.3 WMI
	5.4 Files
	5.5 External Command

	6 Running UI++
	6.1 Common Usage Scenarios
	6.1.1 Use outside of a task sequence (including testing).
	6.1.2 Use within a task sequence
	6.1.3 Use as a prestart command

	6.2 Optional command-line parameters
	6.3 Variable Editor
	6.4 Log File

	7 Common Snippets
	7.1 Preflight Checks
	7.2 Required Applications Based on Group Membership

	8 Complete Examples
	8.1 Example 1: Within OSD
	8.1.1 XML Listing
	8.1.2 XML Breakdown

	8.2 Example 2: A Complex Real-world Example Within OSD
	8.2.1 XML Listing
	8.2.2 XML Breakdown

	9 Configuration File
	9.1 Feature Configuration & Example Snippets
	9.1.1 Action Groups
	9.1.2 AD Authentication
	9.1.2.1 User Attributes
	9.1.2.2 Computer Name Check

	9.1.3 AppTree
	9.1.3.1 Required Software and Groups
	9.1.3.2 Default Software and Groups
	9.1.3.3 Included Software
	9.1.3.4 Hidden Software
	9.1.3.5 Icons

	9.1.4 Default Values
	9.1.5 External Call
	9.1.6 Error Info
	9.1.7 Info
	9.1.8 Input
	9.1.8.1 TextInput
	9.1.8.2 ChoiceInput
	9.1.8.3 InputInfo
	9.1.8.4 CheckBoxInput

	9.1.9 Files
	9.1.10 Preflight
	9.1.10.1 Warnings
	9.1.10.2 Timeouts
	9.1.10.3 Refresh

	9.1.11 SaveItems
	9.1.12 Switch
	9.1.13 Registry
	9.1.14 Task Sequence Variable
	9.1.15 Software Discovery
	9.1.16 Task Sequence Variable List
	9.1.17 Variable Saving and Loading
	9.1.17.1 TextBox
	9.1.17.2 Drop-Down list Box
	9.1.17.3 Info

	9.1.18 WMI

	9.2 The Back Button
	9.3 Values and Variables
	9.3.1 Variable Replacement
	9.3.2 Boolean Variable Negation

	9.4 Conditions

	10 Configuration File Reference
	11 Change Log History
	12 Known Issues
	13 License

